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Abstract

To aid in the investigation of new simultaneous optimisation strategies for flexible vehicles

and their control systems, a two-dimensional aerofoil optimisation which demands minimal

computational effort is studied. Although computationally simple, the design allows for

optimisation over multiple disciplines: the structure can be designed by varying the stiffness

of supporting springs; the control architecture through weightings in a LQR controller; the

observer by means of the placement of pressure sensors; and the aerodynamics via the shaping

of the compliant trailing edge. Optimising over all these fields simultaneously is compared to

a sequential methodology of optimising the open-loop characteristics first and subsequently

adding a closed-loop controller. Parametrisation of the design vector and variable selection

often require user input and are fixed during optimisation. Our research aims to automate

this process. Furthermore, we investigate whether varying the parametrisation and number

of design variables during the optimisation can lead to improvements in the final design.

This parametrisation is shown to make the optimisation more robust with respect to the

initial design, and facilitate an automated variable selection methodology. This variable

selection allows for the dimension of the problem to be reduced temporarily and it is shown

that this makes the optimisation more robust. The second half of the work focuses on the

derivation of a cantilever model. The model consists of a geometrically-nonlinear, slender-

beam described by a one-dimensional reference line that can deform in three-dimensional

space; a two-dimensional, potential flow model defined over the span of the beam; and trailing

edge flaps that can vary in size and position. The intrinsic beam formulation is chosen as it

results in equations of motion with at most quadratic nonlinearities, which is exploited for

deriving analytic derivatives. These derivatives are used to demonstrate how adjoint-based

methods can accelerate aeroelastic calculations.

https://www.overleaf.com/project/5c39e68aafe81053a81f59f5
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Chapter 1

Introduction

The field of AeroServoElasticity (ASE) is concerned with the mathematical modelling and

control of interactions between the disciplines of aerodynamics, structural dynamics and rigid

body mechanics and is especially important in the modelling of flexible aircraft. Neglecting

these interactions in the design of flexible aircraft can, and historically has proven to, lead to

at best undesirable consequences — such as reduced control effectiveness, explained in Section

1.1.1 — and at worst instability and structural failure. Cases of catastrophic failure with

flexible aircraft are numerous and well known, for example, the 2004 NASA Helios prototype

developed an excessive dynamic response, leading to structural failure, due to a gust eliciting

an unexpected wing configuration. The subsequent investigative report highlighted the need

for: ...more advanced multidisciplinary (structures, aeroelastic, aerodynamics, atmospheric,

materials, propulsion, controls, etc.) “time-domain" analysis methods appropriate to highly

flexible, morphing, vehicles and procedures to control wing dihedral in flight [1].

Historically ASE considerations were not needed as early aircraft designs tended to be

25
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relatively stiff — characterised by over-sized, stiff structures [2] and heavy materials — this

allowed uncertainties and aeroelastic effects to be ignored during modelling and design [3].

However, early designs did not shy from the use of active control systems. The use of sensors

on an aircraft to feed back information to a control system that can automatically regulate

lifting surfaces to alter the dynamics has been an active research topic for over 70 years [4].

Not only have controllers been used to change the dynamic behavior of aircraft but they

have made it possible to fly inherently unstable aircraft such as the General Dynamics F-16,

which first flew in 1974 [5]. However, such dramatic reliance on the controllers is extremely

rare outside of military applications, due to regulations on aircraft safety.

There are multiple objectives one could have when designing an aircraft, for example

one could desire: speed, maneuverability or a long lifespan. Another commonly sought

attribute is efficiency, a term we will use in a general sense to avoid highly design specific

goals. Instead, we use efficiency to group together several objectives such as: minimising

fuel needed for a specific mission profile; maximising an aircraft’s range; or maximising the

length of time an aircraft can stay aloft. These objectives might be subtly different but their

design solutions often share similar characteristics.

Progress towards more efficient aircraft has been made since the aforementioned early

designs, streamlining the over-stiffening and over-sizing, enabling the production of lighter

aircraft with each new generation. For example, the Boeing 787 Dreamliner was one of

the first commercial aircraft to construct the airframe primarily from composite materials,

contributing to approximately a 50% reduction in total structural weight, relative to previous

generations. The manufacture claimed that this, among other design features — such as more

economical engines — was able to reduce operational cost and CO2 emissions. However,

weight reduction and engine economy are not the only ways to increase efficiency: major
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gains are possible by improving aerodynamic efficiency [6], which is normally quantified using

the lift-to-drag ratio of the aircraft. Creating lift requires lifting surfaces, thus, is indirectly

constrained by weight. Increasing aerodynamic efficiency can instead be thought as pursuing

a reduction in drag. An estimate of the drag coefficient CD of an aircraft can be made via

the drag polar equation [7], which can be reduced to

CD − CD0 ∝
C2
L

AR
, (1.1)

where CD0 is the zero-lift-drag coefficient — a function of profile, friction and pressure drag

on all the aircraft parts, for example, the engines, fuselage and landing gears — CL is the

lift coefficient and AR is the wing aspect ratio, i.e. the ratio of wing length to the mean

chord length. Thus, increasing aspect ratio decreases drag and is a key characteristic when

seeking ever more efficient aircraft. This is evident when looking at commercial jet designs

over time, where one can see an increase in aspect ratio, either by increased wingspan or

by the addition of wingtip devices [8]. Current examples of high-aspect-ratio commercial

jets include the Airbus A320 and the Boeing 747. A more extreme example of a manned

long-endurance aircraft is the SolarStratos: a two-seater solar aircraft with a wingspan of

24m, weight of 450kg and a planned endurance of more than 24 hours. Yet, manned aircraft

are heavily constrained by current aviation regulations, impeding the progress towards more

efficient aircraft. For example, it has long been known that Active Flutter Suppression (AFS)

has the potential for major weight savings [9], but agencies such as the European Aviation

Safety Agency (EASA) restrict the use of AFS on commercial manned aircraft. However, the

safety margins for unmanned aircraft do not restrict the design space as much and as such

far greater endurance has been seen in unmanned aerial vehicles (UAVs).

Classically UAVs have predominately be used in military settings, either for weapon

or reconnaissance based platforms. Notable platforms in the military market include: the
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Global Hawk — with over 100,000 hours flown above combat zones, a record endurance of

over 33 hours and a wingspan of 35.4m; and the Phantom Eye — a liquid hydrogen powered

UAV, with a wingspan of 46m and a 4 days (at 20km) endurance goal. Recently as the

accessibility and reliability of commercial UAVs comes to fruition the civilian use of UAVs

has become more common. For example, the telecoms market (including Google, Facebook

and Vodafone) has made investments into long-endurance UAVs. The telecoms industry has

seen an impressive rate of growth in the past decade. Mobile data traffic has grown 18-fold

over the past 5 years with almost half a billion mobile devices and connections added in

2016 [10]. Telecommunication companies aim to further perpetuate growth by using UAVs,

reaching customers in remote areas where the logistics or costs of setting up traditional

communication networks are prohibitory. One of the platforms closest to market is the

commercially-available Airbus Zephyr, a solar powered UAV capable of altitudes of up to

22.5km, and a record of over 14 days of continuous flight without refueling.

Longer endurance can also be made possible by flying at higher altitudes. The Global

Hawk, Phantom eye, and the Zephyr are all examples of High-Altitude Long-Endurance

(HALE) aircraft. At altitudes of over 20km the air density is less than 10% that at sea level,

which greatly reduces drag. Moreover, the higher altitude is an enticing vantage point for

both surveillance and communication. Furthermore, wind and gusts are less extreme and

more predictable at these altitudes [11]. However, lower air density also causes a decrease in

lift. To overcome this a larger wing area is required, and coupled with the desired high-aspect-

ratio can lead to large wing bending moments. Combined with the goal of low structural

weight typically produces flexible aircraft designs that can suffer from large wing deflections.

Attempts to reduce the deflection of high-aspect-ratio, low-weight aircraft have included

braced or joined-wing concepts. For example, the truss-braced wing concept of the SUGAR

Volt hybrid aircraft Figure 1.1a and the joined wing Lockhead Boxwing concept Figure 1.1b.
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(a) SUGAR Volt hybrid
Image credit: Boeing

(b) Lockhead Boxwing
Images credit: Lockhead

Figure 1.1: Concept aircraft that are attempting to attenuate large deflections of
high-aspect-ratio wings.

These concepts may be promising for large transport platforms that require a fuselage for

passengers and/or payloads. However, HALE UAVs tend to have small, if any, fuselages

meaning that designs with flexible wings are typically considered.

With stiffer structures it can be adequate to use linear structural models that lin-

earise the structural dynamics around the cruising conditions. As one considers more flexible

aircraft, new nonlinear effects become pronounced. The most obvious are the geometric-

nonlinearities due to the large deflections of the wing [12]. Another phenomenon that has

been observed is strong coupling between bending modes of the wing and the flight dynamic

modes [13]. This occurs as the natural frequencies of the wings decrease (lower natural fre-

quencies are associated with more flexible wings) and become comparable to the natural

frequencies of the flight dynamics. Regardless of where, when or how nonlinearities become

significant, greater accuracy can be expected from using a time-domain formulation instead

of a frequency-domain formulation [14]. The importance of nonlinearities in flexible aircraft

greatly increases the need for more sophisticated models which are typically more compu-

tationally demanding. Access to the required mathematical and computational tools has

only become available in the past decade or two [15]. However, at present the literature
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(a) X-HALE
Image credit: University of Michigan

(b) NASA Helios
Images credit: NASA

Figure 1.2: Comparison between the X-HALE project and the NASA Helios aircraft.

has reached a point in which the mathematical and computation tools have outgrown what

has been tested and hence lacks practical validation. Cesnik et al. [16] states: ...there has

been no validation of the integrated solution that brings the coupling effects between nonlinear

aeroelasticity and flight dynamics, since no data is available for such an exercise. This is

why Cesnik et al. have made an effort to design an Experimental HALE (X-HALE) aircraft

Figure 1.2a as a platform to collect such data. Note the similarities with the NASA Helios

Figure 1.2b.

The design of a flexible aircraft requires several processes including, but not limited to:

wind tunnel testing, manufacturing logistics, flight testing, concept design and Multidisci-

plinary Design Optimisation (MDO) — the focus of this work. Design optimisation is the

field that aims to improve, with respect to merits defined in a cost-function, current designs

via mathematical modelling and optimisation techniques. MDO is concerned about applying

design optimisation to designs that possess multiple distinct sub-disciplines, for example, an

aeroservoelastic flexible aircraft model has at least three interacting sub-disciplines: aerody-

namics, structural mechanics and control theory. Clearly advances in optimisation techniques

have a direct effect on the ability to design increasingly more efficient aircraft. A recent exam-
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ple of this is the purported 1000kg worth of weight savings from using a tool called topology

optimisation, discussed in Section 1.1.2, in the design of the Airbus A380 [17].

Although the tools to model flexible aircraft have been available for a number of years,

the design of such aircraft requires many evaluations of said models — demanding substan-

tially more computation power than is typically available. Hence, using the most sophisti-

cated models, discussed in Section 1.1.1, in the design process is still not feasible and is very

rarely performed in practice. One purpose of this thesis is to accept that current computa-

tional power means the latest modelling techniques are infeasible for the design of flexible

aircraft so instead seeks and tests, on simple models, mathematical techniques that may

lessen the computational burden.

1.1 Literature Review

Design optimisation of controlled aeroelastic systems is a research interest that spans

many topics. We characterise this research interest into the disciplines of aerodynamics,

structural mechanics, control theory and optimisation. Each on of these disciplines can

be acknowledged as a separate and principle research area. As such, this literature review

initially considers these research areas independently before ending with a review of the

combined subject—optimisation of aeroservoelastic systems.
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1.1.1 Aeroservoelastic modelling of flexible aircraft

Unsteady aerodynamics

There are numerous ways aerodynamic forces can be modelled and, although we in-

troduce the techniques separately here, it is not uncommon for a mixture of techniques to

be used on the same model or in different stages in the design process. The highest fidelity

method is Direct Numerical Simulation (DNS) of the full Navier-Stokes equations [18]. DNS

demands significant computational effort since it requires a relatively fine mesh to resolve

turbulent flow. In theory, DNS methods can predict all aerodynamic non-linearities includ-

ing phenomena, such as shock-induced boundary-layer separation [19], that can cause Limit

Cycle Oscillations (LCO) [20]. LCO’s or their considerations are common in flexible aircraft,

hence, having an ASE model that demonstrates LCO’s is useful in our context of designing

HALE aircraft. Improvements in computational efficiency can be made without significant

compromise of the simulation accuracy by using Large-Eddy Simulation (LES) [21]. LES cal-

culates the largest eddies directly then uses turbulence models of the smaller scales. However,

due to the intense computational requirements of DNS and LES methods they are very rarely

used in aeroelastic models. Instead, they are used in only small, non-dynamic segments, e.g.

aerofoil shape optimisation [22], noise reduction optimisations [23] or for validating simpler

codes and methods. For the remainder of this Section the methods depicted in Figure 1.3,

which are commonly used in aeroelastic models, are described.

Often when designing, especially on a system wide aircraft level, compromises with the

level of fidelity in the aerodynamic model must be made so that simulations are quick enough

for an optimisation. Larger systems, for example a full wing design, are only computationally

feasible if less costly methods, such as a Reynolds-averaged Navier-Stokes (RANS) method
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Figure 1.3: Aerodynamic modelling used in aeroservoelasticity.

[24], are employed. RANS methods [25] simplify the Navier-Stokes equation by averaging,

in time, the turbulent parts of the flow. The turbulent parts are then modelled by semi-

empirical formulae. Furthermore, RANS methods retain all the viscous terms, hence, can

capture moderate flow separation and thus aerodynamic stall [26]. Models that account

for stall will often exhibit LCO in certain flight envelopes [27]. This can be due to stall

limiting the amplitude of unstable oscillations. Another method considered high fidelity is

the solution to the Euler equations [28]. The Euler equations describe inviscid, compressible

and rotational flows. They can also be linearised around a mean flow which can be useful

for flutter calculations. Note that flutter calculations are extremely common in aircraft

modelling and design, as flutter instabilities can cause sudden and catastrophic failure of

aircraft. Although aeroelastic modelling with RANS and Euler methods is not uncommon

[29] they tend not to be used for ASE optimisation, at least for full aircraft models, due to

being too computationally expensive.
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The last of the methods to be described that can model three-dimensional effects are

Panel [30] and Lifting-surface methods [31]. Panel methods are techniques for solving incom-

pressible, inviscid potential flow over thick 2D and 3D geometries. Geometries are discretised

into vortex sheets which give rise to circulation and hence lift. The main advantage of panel

methods compared to lifting-surface methods is that thickness effects can be used in the

calculation of profile drag. However, stream-wise motion and hence drag has minimal ef-

fect in aeroelastic calculations [32]. Lifting-surface methods are useful for gust response and

dynamic stability of flexible aircraft [33]. In particular, they can give accurate results for

HALE aircraft at low speeds with attached flow, where viscous effects are small. The Doublet

Lattice Method (DLM) [34] is frequently used in industry for linear subsonic aeroelasticity.

This method assumes that the wake is flat and convected downstream at the constant free-

stream velocity. However, DLM does not capture in-plane motion sufficiently to be used,

for example, in the analysis of T-tail flutter [35]. Moreover, the flat wake does not capture

phenomenon such as wake roll up. The Vortex Lattice Method (VLM) [36], another lifting-

surface method, is capable of modelling in-plane motion. This is accomplished with the use

of vortex panels and horse-shoe vortices. One can extend the VLM to the Unsteady Vortex

Lattice Method (UVLM) [37]. The UVLM is a time-domain method and models the wake

to be free, i.e. the wake is convected with the local flow velocity. Hence, it can model wake

roll up or interaction between the wake and other surfaces. A phenomena called wing rock

[38] can be captured using UVLM, wing rock has been shown to induce LCOs [39]. Lifting-

surface methods are reviewed in [40], where it is also shown that they can be reduced to a

finite state space form. This is highly compatible with the design of active control systems

and for dynamic time domain analysis. Recently, UVLM has been used extensively for fully

coupled aircraft flight dynamics and aeroservoelastic models [41, 42, 43].

Finally, we discuss two-dimensional methods. Strip theory [44] splits the wing into finite
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portions and a two-dimensional potential flow is calculated for each section. The sections

can then be integrated over the span of the wing. Two-dimensional flow cannot predict

three-dimensional phenomena such as tip effects. However, tip effects become negligible for

high-aspect-ratio wings, and thus, many HALE aircraft models have used strip theory [45, 46,

47]. Although possible, it is difficult to include aerodynamic coefficient calculations or stall

models with UVLM. Whereas, two-dimensional flows around aerofoils are well documented

allowing for semi-empirical corrections to be made. Tip and stall corrections are possible

with Peters’ [48] induced flow model, a finite state model which uses the aerodynamic data

of the wing cross-sections. Two-dimensional stall models that are still in use include the

ONERA [49] and Beddoes-Leishman [50] methods. The lowest fidelity models simply use

the rational function approximations and state-space fitting methods of Theodorsen [51] and

Wagner [52]. These are capable of modelling unsteady, inviscid aerodynamic forcing on thin

aerofoils up to small angles.

Structural Dynamics

Typically, it is the solution to the aerodynamics that dictates the computational time

required for simulating aeroelastic problems. The level of fidelity of the structural model

has limited consequences on the coupled analysis. Hence, structural modelling decisions tend

to be problem specific as opposed to restricted by computational time. Structural analysis

require first a kinematic assumption, for example assuming a structure can be modelled

as one-dimensional beam, then a discretisation scheme. Geometrically-Exact Beam Models

(GEBM) can be used to describe geometrically non-linear, three-dimensional dynamics of

a reference line, depicted in Figure ??. Non-linear beam theories have been used to model

helicopter blades [53], large wind turbine blades [54] and high-aspect-ratio wings [55]. Beam

theory, typically uses deflections and rotations as primary variables. However, finite rotations
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can lead to large errors when integrated over. Instead, some alternative formulations known as

intrinsic theory use velocities and strains as primary variables [56]. The disadvantage of these

primary variables is the need to integrate velocities if displacements are required. Palacios

et al [57] review the use of different primary variables on a flexible aircraft model. Even

though beams can model three-dimensional dynamics, they themselves are predominantly

one-dimensional objects and hence lack the ability to model chord and thickness effects.

Structural solutions are typically based on Finite Element (FE) methods, which are not

restricted to one-dimensional formulations. Geometries are discretised into a finite number

of sections. Local equations for each section are integrated over, with variational methods,

to give the global properties of the structure. FE methods have been used extensively in the

modelling of aircraft [58, 59, 60] and are common in industry. Hodges produced a review of

composite rotor blade modelling that includes a discussion on FE based approaches [61].

Numerous software packages now exist that are capable of modelling complete aircraft

models in which flight dynamics and non-linear aeroelastic effects are coupled. For exam-

ple, SHARPy (Simulation of High-Aspect-Ratio Planes in Python) [62], UM/NAST (the

University of Michigan’s Non-linear Aeroelastic Simulation Toolbox) [63], Virginia Tech’s

NATASHA (Non-linear Aeroelastic Trim and Stability if HALE Aircraft) [64] and NANSI

(Non-linear Aerodynamics/Non-linear Structure Interaction) [65].

Control Theory

Control theory aims to change the behavior of a dynamical system, typically referred to

as the the plant, via the design of a controller, a system that can affect the plant’s dynamics.

It has wide application across a range of scientific and engineering fields, for example: biology
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[66], robotics [67], chemical engineering [68], financial models [69] and fluid dynamics [70].

A control system can either be described as open-loop or closed-loop. Open-loop systems

do not monitor outputs from the plant to determine the control. To give a simple example,

most toasters allow the operator to change a numerical value, and once chosen the toaster

will carry out a predetermined routine that does not monitor the toaster’s current state.

However, there are many unknowns and uncertainties in this system — such as the thickness

or type of bread and the temperature or humidity of the room — which may lead to an

undesired output of toast. To account for these one could design a toaster that uses closed-

loop control. Closed-loop controllers monitor outputs from the plant and adjusts the controls

in response. The operator of a closed-loop toaster would input a desired level of toasting, the

toaster could then adjust the heating appropriately as it senses the current level of toasting.

Within aeroservoelasticity, open-loop control is commonly used in the study of maneu-

vers, for example, [71] investigated a rolling maneuver in which ailerons were deflected so

that the rolling performance could be maximised. Closed-loop control has been employed for

gust load alleviation [72], flight control [73], and active flutter suppression [74]. Historically,

control systems have been added to aeroelastic systems once the aeroelastic design has been

fixed — this is typically referred to as a sequential design. This strategy assures that the

aircraft has good performance even without control, however, this approach cannot fully ex-

ploit the benefits of closed-loop control design. Furthermore, this methodology is likely to

be sub-optimal compared to the simultaneous optimisation of the entire design-space [75].

Nevertheless, the sequential approach may be sufficient when the coupling between the dif-

ferent components of the system is weak. However, such couplings are significant for flexible

aircraft in comparison to traditional rigid-body aircraft, that typically possess relatively stiff

wings. The increase in coupling complicates design since the natural frequency of the first

bending mode of a traditional aircraft compared to its flight dynamics will often be sep-
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arated by at least an order of magnitude. This allows the structural and flight dynamic

design processes to be separated. Conversely, flexible wings which possess natural frequen-

cies comparable to those of the flight dynamics lead to strong coupling characteristics [76],

in which a simultaneous design could be beneficial or even necessary for flight integrity. This

paper will demonstrate the advantages and limitations of simultaneous design of coupled

aeroservoelastic optimisation.

There are a further two techniques for solving plant and control optimisation problems,

iterative [77] and nested [78] (sometimes called bi-level) strategies. Iterative methods alter-

nate between optimising either the plant or the controller. For example: given a structural

design first minimise some control cost; next, determine the sensitivity of the optimal control

cost with respect to the structural variables; finally, use these sensitivities to redesign the

structural design; this process is repeated until the designer is satisfied. Nested methods con-

sist of a inner and outer optimisation loop. The outer loop optimises the overall objectives

such as minimising mass, while, the inner loop finds the optimal controller for every plant

generated by the outer loop. Fathy et al. [79] theoretically and numerical review sequen-

tial, iterative, nested and simultaneous strategies — sequential and iterative methods fail to

guarantee the overall objectives optimality, whereas nested and simultaneous do.

Other complications in controller design, in ASE systems, are the static aeroelastic

effects of control effectiveness or control reversal [80]. This is when the effect of a control

surface is reduced or even reversed depending on the current state of the aircraft. For

example, a trailing-edge control-surface on an aerofoil creates both an aerodynamically lift

and moment when deflected. If the operator requires an upward motion they may deflect

the control-surface to create an upward lift, however, in certain states the control-surface

would also created a moment large enough to angle the aerofoil down, causing a downward
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motion. Further control design considerations are control surface saturation and controller

free-play [81]. Saturation and free-play are non-linearities that can be added to the modelling;

saturation is when the control input is limited to a finite amount, for example, a control

surface being restricted to only deflecting by 5%; free-play is when a control surface can

deflects without structural resistance around its desired input. Even with the lowest-fidelity

models, LCOs may be observed when either free-play or saturation are present. This work

will show, in Chapter 4, how control saturation can cause a LCO, even if it is the only source

of non-linearity in a simple aeroelastic model.

Finally, it is worth discussing non-linearities in control theory. Non-linear control theory

is an established subject [82], however, typically, ASE models have too many states or are too

computationally demanding to take advantage of most non-linear control methods. Recently,

non-linear methods have become more common with the ASE literature, for example, Wang

et al. [83] used Model-Predictive Control (in which an optimisation problem is solved each

time the control law requires updating) on a flexible aircraft model that contained quadratic

non-linearities. Due to the fact that MPC requires on-line solution of optimisation problems,

it can only be applied if the underlining system model is relatively low order. To achieve this,

Reduced Order Methods (ROM) can be used. For example, methods to reduce model size

were explored by Da Ronch et al. [83, 84], who reduced the size of a large-order, non-linear

flexible aircraft model so that control design is practical.

1.1.2 Optimisation

As new aircraft surpass their current limitations the interdisciplinary coupling between

the aerodynamics, structure and control become more influential. In light of this it is natural

to explore a combined design methodology, such as Multidisciplinary Design Optimization
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(MDO). A simultaneous MDO approach is increasingly used in a widening range of fields

as increased computational resources have rendered solvable what were once prohibitively

computationally expensive problems now. Applications of MDO include global optimisa-

tion of naval design [85], optimal design of large power and water distribution [86, 87], and

multiobjective approaches in turbomachinary design [88]. However, the most-used engineer-

ing application has been within aircraft design. Current momentum for MDO within the

aeronautics community is driven by three primary motivations: competition for better aero-

dynamic efficiency; the use of system wide objective functions, e.g. cost of production or fuel

efficiency; and designs that rely on dynamic control systems to meet objectives. Efficiency

is of paramount importance within the public aviation industry due to the rise in annual

passenger traffic [89] and predictions that aviation’s share of human caused climate change

could be as high as 15% of the total by 2050 [90].

It has yet to be decided what class of optimiser is best suited for MDO of ASE problems

and as such, many have been employed. Classically, most optimisation problems were solved

with descent methods that used the gradients of the objective function (or approximations

to the gradient) to find solutions that satisfied the Karush-Kuhn-Tucker (KKT) conditions.

These are necessary conditions for a stationary point of a constrained non-linear objective

function, but in general do not guarantee globally optimal solutions. Recently, non-gradient

based optimisations have been used for aeroservoelastic design. These methods usually rely

on using numerous candidate solutions that are spread throughout the design space. For

example, a Particle Swarm Optimisation (PSO) method was used by Haghighat et al. [91]

on a linear, flexible aircraft model; PSO iteratively attempts to improve the best known

solution by using a population of particles (candidate solutions) that update their position

and velocity through the design space according to both their local information and infor-

mation on the population’s (swarm’s) best known positions. Genetic Algorithms (GA) for
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optimal wing designs were used by Manan et al. [92] and Nam et al. [93]. Again, GA’s do

not require gradient information and use instead a population of candidate solutions, each

of which contain a set of characteristics that can randomly mutate or mix with other solu-

tions. The advantage of non-gradient based methods is that they are able to sample large

portions of design space, gathering global information. However, these methods can quickly

become infeasible if function evaluations are computationally expensive and/or if there are

many design variables. The strategies introduced in this thesis are gradient based but take

advantage of globally collected data.

Every engineering problem has some inherent uncertainty and this can be taken into

consideration by amending a classical optimisation problem by introducing stochastic vari-

ables and creating a non deterministic version of the problem. This can be performed on

either the constraints, in what is known as Reliability-Based Design Optimisation (RBDO),

or the objective function, which is known as Robust Design Optimisation (RDO). A compar-

ison, using a wing design optimisation, between a RDO approach and a RBDO approach is

made by Paiva et al. [94]. It was found that the RDO and RBDO solutions differed greatly,

compared to the deterministic counterpart, even for conservative values of uncertainty.

Topology optimisation is commonly used to minimise the weight of airframes and is

believed to have led to significant weight savings in the Airbus A380 [95]. Topology optimi-

sation has yet to be used in an ASE optimisation. When designs have multiple, and usually

conflicting, objective functions a branch of optimisation called multiobjective optimisation is

used. One method for multiobjective problems is Goal Programming (GP), which was used

by Suzuki et al. [96] for the design of a wing with a gust load alleviation system subject

to multiple objectives. GP relies on the user defining priority levels for the objective func-

tions, objectives are then minimised as long as they do not infringe on objectives with higher
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priority than them.

A major hurdle in the automation of design optimisation is automating the selection

or prioritisation of variables. Traditionally, design variables are chosen from a large set of

parameters from engineering experience. Since this could limit the potential in new concept

designs, automating this choice with a more meticulous process may lead to improvements,

as studied in Tu et al [97]. As an approximate model is being constructed, the variable

space is sampled and variables that are likely to be dominant are kept and less influential

ones are dropped. A variable screening process could become imperative as the number

of design variables increases, especially if the complexity of the design-space is prohibiting

the potential of a simultaneous design. More recently, a variable reduction technique has

been investigated by Ghisu et al.[98]. Their work shows how a re-parametrisation based on

a Proper Orthogonal Decomposition (POD) of initial optimisations can accelerate a design

optimisation. Their paper is a clear proof of concept that a general parametrisation can be

used to not only to facilitate the optimisation, but also to aid variable selection. However, it

does not investigate in which situations this technique can lead to improvements, why it can

accelerate optimisation and how best to choose a sample of data for the POD. Furthermore,

the method is not yet fully automated as the number of variables removed is dependent on

an arbitrarily chosen user input.

1.1.3 Optimisation of Aeroservoelastic Systems

A key difficulty is that even though a sequential design is expected to be sub-optimal,

the increased design-space complexity associated with a simultaneous optimisation approach

may itself make the optimisation problem intractable. For this reason, early studies in ASE

optimisation often used simple models and output-feedback control systems, which allowed
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simultaneous optimisation over plant and controller. Suzuki [96] optimised the design of a

cantilever wing by varying spar thickness and control gain, while constraining the system’s

open and closed loop stability, the spar stress and the control surface deflection angle; whereas

Nam et al. [93] used a wide range of design variables (ply orientation of the composite layer,

actuator placement and sizing) to minimise the root mean square of gust responses for vari-

ous airspeeds. An early investigation in aeroelastic and control system optimisation for rotor

flight [58] compared sequential and simultaneous optimisation techniques, confirming that

rotor design and control design are strongly coupled and benefit from simultaneous optimisa-

tion. Although in these cases a simultaneous plant/controller optimisation is employed, only

relatively simple control feedback is synthesised, in which controllability and observability

conditions are not considered. Furthermore, observer dynamics were not included in the

optimisation; instead, observer gains and sensor placement were chosen prior to the design.

It was not investigated if adding complexity in these models would still allow a simultaneous

approach to be advantageous.

An attempt to increase controller complexity included the modelling of parameter un-

certainty, as considered by Moulin et al.[99]. This incorporates modern methods of robust

MIMO control synthesis into a multidisciplinary design optimisation problem. However, this

comes at the sacrifice of having to use a simpler sequential optimiser. A recent attempt to

include more advanced control design [91] used the internal weighting matrices of an LQR

problem as design variables for a linear, flexible aircraft model. This study sought to opti-

mise a metric of endurance (a function of the lift-drag ratio and fuel fraction) over symmetric

manoeuvres and gusts. Optimal actuation within aircraft manoeuvres was also studied by

Maraniello et al. [71] using a nonlinear geometrically exact beam model and UVLM. Here a

pre-programmed open-loop actuation is optimised via parameterising the deflection of control

surfaces with a set of B-splines. Most authors use symmetric maneuvers and gusts within
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objective functions and constraints, due to the fact that linear models tend to not be accu-

rate enough to model asymmetric aeroelastic simulations. This was investigated by Shearer

et al [12]. who showed that a linearised model was insufficient to model a flexible aircraft

performing asymmetric maneuvers. In these cases, more complex control architecture is in-

corporated into the optimisation, however the studies lack observer design, actuator/sensor

sizing, and actuator/sensor placement considerations, problems well studied outside of the

ASE literature. For example, the optimal placement of multiple actuators under H∞-control

has been studied by Kasinathan et al.[100] and conditions for the convergence, to an exact

optimal performance, for a sequence of approximations are discussed. Similar existence and

convergence proofs are not found within the ASE literature, despite the fact that it was

shown in Demetriou [101] that placement of sensors can significantly change overall system

performance.

System wide objective functions are crucial in concepts similar to the Boeing X-48,

its blended wing body produces a problem not conducive to a segmented approach, i.e. an

approach in which each part is designed separately and then aggregated. Instead, it is natural

to chose system wide objectives and employ simultaneously design [102]. The Lockheed

Martin X-56A [103], with its active flutter suppression, and the design of flapping wings

[104] rely on their control systems, i.e. the underlying open-loop system cannot function.

When the control dynamics are significant a simultaneous design outperforms sequential as

they couple with the plants dynamics [79, 88].

1.2 Open Research Questions

Question 1. What would be the simplest but representative aeroservoelastic

model that can be used to investigate simultaneous optimisation methods?
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In order to investigate high volumes of optimisation trajectories it would be beneficial to

design a model that requires minimal computational effort. In the context of aeroservoelastic

design optimisation a balance between model complexity and computational requirements

will be needed to ensure that the problem remains relevant. An obvious tactic to reduce

computation burden would be to use a two-dimensional camberline model. However, this

level of simplicity would normally limit the choice of design variables. Yet, we present such

a model in Chapter 3 that does allow for design optimisation over all the aeroservoelastic

fields.

Question 2. What are the trade-offs between problem complexity and

performance improvements between simultaneous and sequential optimisation

methodologies?

Increasing the problem complexity by using a simultaneous optimisation strategy or

increasing the dimensionality of design space will not reduce the performance of possible

designs and may indeed mean higher performing designs exist. But the existence of a better

global minimum does not imply an optimiser will converge to better solutions. So although a

sequential method is known to be a sub-optimal strategy it might outperform a simultaneous

method depending on the design space.

Question 3. Is there a reparameterisation strategy that improves the opti-

misation trajectory in a complex design space?

Traditionally, design variables are intuitively chosen engineering variables, such as,

masses and lengths. From a numerical point of view this might not be optimal. The choice

of parametrisation should maximise the accessibility and connectedness of the design space
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but minimise its complexity, for example, the number of local minima. These goals are of-

ten conflicting. In this work we investigate whether a method that reparameterises a user

inputted design vector can affect optimistion trajectories.

Question 4. How can the dimensionality of an optimisation problem be

reduced in a problem independent manner?

As mentioned in Question 2 design space complexity can limit optimiser performance.

So although reducing the dimensionality of an optimisation problem might be sub-optimal

it could promote the optimiser to converge to better solutions. Intimate knowledge of the

design optimisation problem or physics may allow a user to prioritise and hence select only

the most advantageous design variables. Nonetheless it would be favorable to be able to

quantify and automate this process, independent of the model or optimisation being studied.

Question 5. Can early modelling choices be exploited to accelerate design

optimisation?

Often the model selection and the optimisation problem definition are independent

choices. We will show how model parametrisation or the choice of state-variables can accel-

erate aeroelastic calculations and design optimisations.

1.3 Thesis Outline

The remainder of the thesis can be summarised as such:

Chapter 2: establishes notation, frameworks and algorithms used in the thesis. It introduces
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aeroelastic systems as a set of Partial Differential Equations (PDE)’s for a fluid domain and a

set of PDE’s for a structural domain that are coupled due to interaction on a fluid-structure

boundary. It then defines aerosevoelastic systems that have aeroelastic plants and a closed-

loop controller — that has its own PDE and couplings.

Chapter 2 continues with defining the design variables, objective function and con-

straints. The concept of how to parametrise the design vector is introduced here and what

consequences that could have on how an optimiser might converge. The Chapter then in-

cludes characterisations and Algorithms for Sequential and Simultaneous design optimisation

strategies. Finally, a method that uses Proper Orthogonal Decomposition is described that is

able to automate a reparameterisation and temporary variable reduction of the design vector.

Chapter 3: derives equations for a computationally inexpensive aeroservoelastic model that

allows for design optimisation over aerodynamic, control and structural variables. A two-

dimensional potential flow is used and a finite approximation is employed to approximated

a linear, unsteady wake effect. The structure is modelled as a camberline, attached to linear

heave and torsional springs, with a smoothly attached trailing edge control surface. This

compliant trailing edge allows for design of the aerodynamic shaping as its deformations can

be represented as polynomial of arbitrary finite size. As well as control variables, in the form

of weightings in an Linear Quadratic Regulator problem, the positions of pressure readings

allow the design over the observer dynamics of the closed-loop aeroservoelastic system.

Chapter 3 also defines an optimisation problem consisting of: a weighted cost function

between a static metric, of the total aerofoil mass, and a dynamic metric, of the performance

in rejecting a “1−cos” vertical gust; a constraint on the linear flutter velocity; constraints on

the design variables directly to ensure they remain physical, for example, that the pressure
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readings are taken on the aerofoil.

Chapter 4: begins with a validation of the model described in Chapter 3. A simple optimi-

sation of an open-loop system is then considered. This simple problem is used to demonstrate

some of the difficulties expected from the full aerosevoelastic design optimisation, such as,

how the complexity of the design space can influence the performance of a gradient-based

optimiser. The Chapter continues by investigating the effect of including control saturation,

a non-linearity, into the model. We show that it is possible that the saturated model can

have a divergent time-domain response even if it has linear stable eigenvalues.

Chapter 4 also examines the advantages and disadvantages to the Algorithms defined

in Chapter 2. Specifically, the chapter compares the difference between simultaneous and

sequential optimisation strategies over a range of free-stream velocities — concluding that

even though a sequential optimisation should be sub-optimal it can sometimes produce better

results. When a simultaneous optimisation strategy is advantageous it is able to identify un-

intuitive but favorable design characteristics. Finally, the reparameterisation and temporary

variable reduction techniques, introduced in Chapter 2, are explored. Both strategies were

shown to be beneficial, especially in reducing the sensitivity of the final design with respect

to the initial design.

Chapter 5: introduces a cantilever model of a wing that could be used for aeroservoelastic

design optimisation, which is outlined in the Future Work Section of Chapter 8. Instead,

in this work the cantilever model is used to derive analytic derivatives. The model consists

of structural, slender beam equations, using velocities and forces as primary variables, and

two-dimensional aerodynamic forces, including gust and control surface inputs. The use of

the intrinsic formulations means only quadratic non-linearities are present in the equations,
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which is used to facilitate the derivation of derivatives in Chapter 6. The equations are

linearised about the forward flight conditions and a truncated Galerkin projection is used

to project the degrees of freedom into a finite space so that the equations of motion can be

written in state-space form.

Chapter 6: explores the use of analytic expressions for derivatives to accelerate aeroelastic

calculations. In past chapters blackbox optimisation solvers such as Matlab’s fmincon were

used to solve the design optimisation problems. These solvers use numerical methods to

approximate derivatives, which can be time consuming as multiple function evaluations per

design variable are required to approximate the gradient of said function. The chapter derives

equations and an algorithm to efficiently calculate the non-linear equilibrium states of the

cantilever model PDE, described at the start of Chapter 5.

Chapter 7: first verifies the state-space equations, linearised from the coupled intrinsic

beam and two-dimensional aerodynamics PDEs in Chapter 5, by comparing the flutter speed

and frequency predicted with values found in the literature. Furthermore, time-domain

responses of the state-space equations demonstrated agree well with other authors using

similar methods. Then the adjoint-based method in Chapter 6 is compared with results from

time-domain solutions from the equations in Chapter 5 and are shown to be good agreement,

hence, validating the analytic derivative expressions from Chapter 6. Finally, an example of

how the adjoint-based method can accelerate aeroelastic calculations is presented.

Chapter 8: A summary of the work, it’s contributions and conclusions are presented here.
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Chapter 2

Aeroservoelastic Optimisation

2.1 Aeroservoelastic Problem Description

In the pursuit of consistency and clarity, the purpose of this section is to introduce

notation that will facilitate the comparison of various optimisation methods on different

aeroservoelastic models. Problems in aeroelasticity involve the coupled analysis of both fluid

dynamics and structural mechanics. Define the state variables for the fluid and structural

domains respectively, as f and s. These variables define the current state of the fluid and

structural systems. Common state variables for these two fields are fluid velocities, fluid

density, temperature and structural displacements. These domains interact with each other

over a boundary Γ = ΩF ∩ ΩS , where ΩF and ΩS are the fluid and structural domains –

this is shown in Figure 2.1. Any force imparted by the fluid on the boundary Γ causes a

deformation in the structure, i.e. a change in s. This deformation in turn will affect the

fluid’s state f . We define partial differential equations for the fluid dynamics and structural

51
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Γ

Structure, ΩS

Fluid, ΩF

Figure 2.1: Definition of Γ as the intersection of the fluid domain ΩF and structural domain
ΩS .

mechanics, respectively, as F and S. The fields are coupled due to their interaction over the

boundary Γ, hence, the partial differential equations are expressed as a function of their own

state variables and of the state of the other field. Furthermore, we define an input u for this

aeroelastic system. We will consider two types of input: the first are extraneous-inputs, these

external and cannot be influenced and cover phenomena such as vertical gusts; the second

are controlled-inputs that can be chosen, for instance, control surface deflection. One must

thus solve

F (f , s;u) = 0 and S (s,f ;u) = 0, (2.1)

where the notation F (f , s;u) = 0 means that the variables before the semicolon have to be

solved for, while, variables after are prescribed. The notation (·; ·) will be used throughout

this work. For brevity, we equate the solution of the separate PDE’s in (2.1) as the solution to

A (f , s;u) = 0. (2.2)

We will also be considering an output z from this system. In theory this could be all the state

variables x := [f , s,u]>, however, in reality (where obtaining real-time information about all

states is impossible/impractical) it is a measured quantity z = z(x), such as readings from
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Open Loop

Boundary Γ

u zF(f , s;u) = 0

Fluid ΩF

S(s,f ;u) = 0

Structure ΩS

Figure 2.2: Open-loop aeroelastic system with input u and output z.

pressure or accelerometer sensors. The input/output relationship of this generic open-loop

aeroelastic system is shown in Figure 2.2.

There are multiple combinations of modeling assumptions and equations one could use,

for example, one could couple the Navier-Stokes [109], Euler or potential flow equations for

the fluid with structural solutions bases on full solid mechanics, model decompositions or

beam equations.

Two principle methods exist to solve such systems, monolithic and partitioned. Mono-

lithic methods require a single system of discrete equations to be derived from the physics

of both fields and their couplings. Consequently, the boundary conditions over Γ are always

satisfied. However, if the scaling (e.g. the required time or space discretisation) between the

fluid and structural problem differs significantly this approach can lead to computationally

inefficient solutions [110]. This is because a monolithic method has to solve both problems

using the same scaling. Thus, a decision has to be made to maintain accuracy but over-

resolve one discipline, or to sacrifice accuracy. Instead, partitioned methods solve the fluid

and structure problems independently, hence, allowing different scalings to be used for each
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sub-problem. This leads to more efficient solution times [111]. However, solving the fluid and

structure equations separately in this manner introduces the obstacle of matching the solu-

tions at the boundary Γ. This can be achieved by exchanging information in an alternating

method between time steps. For example: at time step t0 the fluid equation is solved and the

corresponding tractions tΓ(f0) on the current structure deflections s0 are calculated, where

f0 are the fluid states at time step t0; these tractions are then inputed into the structural

equations that are solved at t1, to give the deflections s1 which are sent to the fluid solver for

the solution at the next time step; this is then repeated as desired. This type of coupling is

referred to as weak and is an explicit method that can suffer from instabilities [112], whereas

the coupling in monolithic methods are implicitly included in the equations and are often

more robust [113].

This work is primarily concerned with aeroservoelastic systems, that is, aeroelastic

systems with active control systems. Hence, we introduce the closed loop system in Figure

2.3 with extraneous-inputw and controlled-input u = K(y) that is a function of the measured

output y. The solution to this closed loop model will equivalent to solving

Ā (f , s,u) = Ā (x) = 0, (2.3)

note that u (or at least some of u) has to be solved for now.
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Closed Loop

A(f , s;u) = 0

Open Loop

u = K(y)

Controller

w

u y

z

Figure 2.3: Aeroservoelastic model made from connecting the system in Figure 2.2 to a
feedback-controller K(y).

2.2 Optimisation Problem Description

2.2.1 Design Vector

Design Optimisation is the process of finding the best design (or at least improving

upon a current design) that meets the requirements for the design’s purpose. A simple

aeroelastic example would be to find the lightest wing (best) that is able to lift a certain

mass but that does not fail under any expected loads (meets the requirements). To achieve

this objective one needs to be able to distinguish between competing designs. This is achieved

by parameterising the designs by a set of design variables. We define the initial design vector

as X̃ ∈ Rd as the set of all the design variables. Furthermore, the design vector is to be

a concatenation of design variables from the three fields described in Section 2.1: the fluid

dynamics, structural mechanics and control architecture, respectively, X̃ = [F, S, U ]. In a
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L
2b

sβ

ez
ey

ex

Figure 2.4: Examples of engineering variables for a cantilever wing.

typical cantilevel model, for example, this design vector could consist of: the wing twist,

which affects the lift distribution; the structural mass and/or stiffness, which affects both

the weight and structural response of the wing; and the sizing of a control surface, which

influences the authority of the controlled response. During the design process an optimiser

will seek to change the design vector as to test whether it has found the best design (or

improved upon the previous design).

Traditionally, the design vector would be a collection of engineering variables, quanti-

tative qualities that are an intuitive choice for a person, for example, chord-length L, span-

length 2b or positions of control surfaces sβ, all of which are depicted in Figure 2.4. Clearly

the choice of what aspects of the design will be varied will affect the structure of the optimisa-

tion problem. However, even the manner in which the design variables are parameterised can

alter the final design. Consider the cantilever model again. How should the structural mass

distribution be parametrised? One could simply define the mass m(si) at a finite number

Distribution A Approved for Public Release, Distribution Unlimited 



2.2. Optimisation Problem Description 57

of positions along the wing {si} as design variables, and then interpolate the mass between

these locations. Alternatively and slightly less intuitively, one could define a finite set of mass

shape functions mi(s), where s is the span-wise distance along the wing, such that the mass

at any point of the wing would be ∑i aimi(s) and ai would be the design variable sent to the

optimiser. One can see an example of the difference such parameterisations would have on

the mass distribution along a wing in Figure 2.5.
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0

0.5

1
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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0.5
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1.5

m2
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m4

Figure 2.5: Example of different parametrisation choices. Top: mass variation at discrete
wing locations and linear interpolation between known values. Bottom: three mass shape
functions and the corresponding mass distributions m(s) = ∑3

i=1 mi(s).

Parametrisation choices can also affect the optimisation and final design, as was shown

by Maraniello et al. [114] when comparing the use of B-splines and discrete sines as sets
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of basis functions to parametrise the actuating torque input of a flexible pendulum. In

the wing mass and pendulum examples the choice of parameterisation changes the available

design space, when choosing a parametrisation, maximising how much of the design-space

is accessible and connected is key but so is minimising the design space complexity. These

are often conflicting goals. For instance, in the first cantilever example above, what is the

most appropriate number of locations si? Clearly the more locations used the larger the

variety of possible designs. However, this will increase the design space complexity, possibly

creating local minima that would terminate a gradient based optimiser at a sub-optimal

design, compared to using fewer locations si.

The question of how to choose an appropriate design vector parametrisation for a given

optimisation problem is often challenging. It might not be practical or optimal using tra-

ditional methods, i.e. when design variables are picked from experience and knowledge,

especially when considering the design of novel platforms that may call for unintuitive so-

lutions. Hence, it may improve the performance of an automated Multidisciplinary Design

Optimisation (MDO) technique if the design vector parametrisation is, at least in part, au-

tomatically selected within the optimiser. One option for this is to simply to choose an

alternative basis for the design vector. Suppose an alternative basis of Rd is represented by

a orthogonal matrix H ∈ Rd×d whose columns {hi}di=1 ⊂ Rd are the elements of the basis.

Now, for any vector X̃ ∈ Rd it is possible to express

X̃ =
d∑
i=1

αihi := X, (2.4)

where αi = (H>X̃)i ∈ R and we define X as the design vector post this parametrisation.
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2.2.2 Objective function and Constraints

This work is concerned with the design optimisation of aeroservoelastic systems. Design

optimisation requires a definition of merit so that one can differentiate which design is best —

this is performed via an objective function J . The objective function is constructed depending

on the goals of the design/designer. For instance, while considering the optimal design of a

flexible aircraft the objective of Haghighat et al. [91] was to surpass current aircraft endurance

limits. Hence, they defined an appropriate cost function that preferences low weight but high

aerodynamic efficiency. More frequently in MDO, objective functions built on higher-level

concepts less directly based on the aircraft can be found, such as, Tetzloff et al. [115] who

consider fleet-wide objectives on direct operation cost, carbon dioxide emissions and noise

metrics. It might be the case that this type of objective function would also benefit from

an automated design vector parametrisation, since the link between objective function and

engineering variables is further removed.

In this work, we define the objective function as

J = J (x(X), X) . (2.5)

It can be seen that the objective function is both explicitly a function of the design vector and

implicitly through the model’s state variables x(X). Suppose that in the cantilevel example

the objective function is total mass, while the design variables are masses along the wing and

the sizing of a control surface. The masses along the wing would explicitly appear in the

objective function but the sizing of the control surface could implicitly affect the objective

function (for example, perhaps a larger control surface could meet the requirements of the

design with a lower total mass).
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At best, the objective function will be minimised, constrained to the governing equations

described by Ā, which now are a function of the design vector also, i.e.

min
X

J (x(X), X) (2.6)

such that Ā (x(X), X) = 0. (2.7)

Usually further constraints are needed for the design to be practical, for example, ensuring

that there are no structural failures. Often these constraints require extra physics and can

possibly be represented by non-linear inequality constraints:

c (x(X), X) ≤ ci, (2.8)

where c, ci ∈ RNi and Ni ∈ Z>0 is the number of such constraints. A typical case, using

the cantilever example, of a constraint that would require further physics would be the

introduction of a constraint that ensures the wing does not buckle under expected loads.

Buckling constraints can be found in [116] where optimisation of a wing is undertaken with

mass, strength, and buckling under consideration. Constraints placed directly upon the

design variables will referred to as bounds and be denoted as

cl ≤ X ≤ cu, (2.9)

where cl, cu ∈ Rd. Such constraints are needed to assure conditions such as the control

surfaces are at least smaller than the wing or to stop an optimiser testing negative masses.
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2.3 Simultaneous and Sequential Optimisation Strate-

gies

Historically, control systems have been added to aeroelastic systems once the aeroelastic

design has been fixed, which is typically referred to as a sequential design methodology. This

is likely to be sub-optimal compared to the simultaneous optimisation of the entire design-

space [75]. The sequential approach may be sufficient when the coupling between the different

components of the system is weak. However, such couplings are typically more prominent

with recently developed very flexible airframe concepts in comparison to traditional airframes,

that were built with relatively stiff wings.

In the cantilever wing example — with wing twist F , mass S and control surface sizing

U as design variables — a classical sequential approach would be to first optimise the model

only considering the wing twist and mass variables, the open loop properties. Once a wing

has been designed, i.e. a F ∗ and S∗ have been found a meeting all requirements, a second

optimisation problem would be solved to select the control sizing variables U . The effect

of this optimisation might be to improve the objective function, but the restriction of the

initial design of the open loop variables may limit any significant gains. On the other hand, a

simultaneous approach would simply optimise the entire design vector X = [F, S, U ]>. The

relaxation of no fixed open-loop structure may allow the optimiser to explore areas of design

space that lead to substantial gains in the objective function.

For brevity, denote one step of a gradient-based optimiser satisfying Ā(x(X);X) = 0

with input w, the aeroservoelastic system described in (2.3) and Figure 2.3, from the current
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design variables X = [F, S, U ]> ∈ Rd to its subsequent value X+ = [F+, S+, U+]> by

X+ = ϕ̄(X,H), (2.10)

where H ∈ Rd×d is the basis in which the gradients are to be computed. Algorithm 1

produces a trajectory of design variables ϕ̄ε(X0, H) ∈ Rd×n+1 corresponding to convergence

of a simultaneous optimisation to a tolerance ε, from initial condition X0, where n is the

total number of algorithm iterations required to reach the chosen tolerance.

Algorithm 1 Convergence of a simultaneous optimisation.
inputs X0 ∈ Rd satisfying 0 ≤ X0 ≤ 1, ε > 0, n = 0, Ā(x), U∞.

repeat

Xn+1 ← ϕ̄(Xn, H)

n← n+ 1

until |Xn −Xn−1| < ε

ϕ̄∗ε(X0, H)← Xn

ϕ̄ε(X0, H)← [X0, X1, . . . , Xn]

return ϕ̄ε(X0, H) ∈ Rd×n+1 and ϕ̄∗ε(X0, H) ∈ Rd.

Alternatively, we define one step of a gradient-based optimiser satisfying A(f , s;u0) =

0 (i.e. the open-loop aeroelastic system described in Figure 2.2) from the current design

variables X = [F, S, U ]> ∈ Rd to its subsequent value X+ = [W+, Z+, U ]>, noting the

control variables remain unchanged, by

X+ = ϕ(X,H), (2.11)

Subsequently we define Algorithm 2 to create a trajectory of design variables ϕε1,ε2(X0, H) ∈
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Rd×n+1 corresponding to convergence of a sequential optimisation firstly for the open loop

variables to a tolerance ε1, then to a tolerance ε2, from initial condition X0 = [F 0, S0, U0]>,

where n1 is the number iterations required for the initial open loop optimisation for con-

vergence to a tolerance ε1 and n is the number total number of iterations required for both

stages in the optimisation.

Algorithm 2 Convergence of a sequential optimisation.
inputs X0 ∈ Rd satisfying 0 ≤ X0 ≤ 1, ε1 > 0, ε2 > 0, n = 0, A(f , s;u0).

repeat

Xn1+1 = [F n1 , Sn1 , U0]> ← ϕ(Xn1 , H)

n← n+ 1

until |Xn1 −Xn1−1| < ε1

ϕ∗ε1(X0, H)← Xn1 = [F n1 , Sn1 , U0]>

ϕε1(X0, H)← [X0, X1, . . . , Xn1 ]

n← n1

Xn ← ϕ∗ε1(X0, H)

repeat

Xn+1 ← ϕ̄(Xn, H)

n← n+ 1

until |Xn −Xn−1| < ε2

ϕ∗ε1,ε2(X0, H)← Xn

ϕε1,ε2(X0, H)← [X0, X1, . . . , Xn]

return ϕε1,ε2(X0, H) ∈ Rd×n+1 and ϕ∗ε1,ε2(X0, H) ∈ Rd.
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2.4 Parametrisation and Variable Selection

2.4.1 Reduced order methods

Due to the computational demand of aeroelastic models it is common to use ROMs

both for analysis and control design. These can be used system wide or to parts of the

model, for example, Wang et al. [117] reduces a large finite element description of a large

aeroelastic structural model to a geometrically-nonlinear beam description. A frequently

used ROM is the Proper Orthogonal Decomposition (POD) [118, 119], in which a sample of

a high-fidelity model (or experimental data) is used to find the coefficients in an expansion of

basis functions. This method is useful for capturing high-fidelity physics in a relatively low

order manner. Other methods include Volterra theory [120], multi-fidelity meta-modeling

[121] eigen-system realization algorithm [122] and harmonic balance [123]; all of which are

summarised in [124].

2.4.2 Proper Orthogonal Decomposition

Starting with a set of engineering variables it would be helpful to find a parametrisation

that facilitates the choosing of a subset of variables that minimises the number of dimensions

needed to describe the design well enough so that the design-space is still able to be ade-

quately explored. One method of achieving this is to use Proper Orthogonal Decomposition

(POD). POD is a powerful data analysis tool that is often used to achieve a low dimensional

representation of high dimensional data. This method is sometimes called Principal Com-

ponent Analysis or Empirical Orthogonal Functions and is used in many fields, including

turbulent flow analysis [125] and image processing [126]. POD uses a sample of points to
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create an orthogonal basis in which the first basis vector maximises the projection of the

sample data, i.e. a basis H = [h1, h2, . . . , hd] with H>H = I is found such that its first

basis vector h1 satisfies,

max
h1

(h1,X)2 s.t. h>1 h1 = 1, (2.12)

where X is the sample data and (·, ·) is the scalar inner product operator on Rd. The second

basis vector maximises the projection of sample data again but is constrained to be orthogonal

to the first vector. This process continues until an orthogonal basis is formed with the last

vector pointing in the direction that describes the least amount of variance.

With this new basis, optimisation can now be performed with the intention that the

rotation will yield a faster and more robust optimisation routine. Furthermore, this method

offers a method with which to make informed decisions on the removal of dimensions, namely

by removing the least variant directions. Not only does this POD method output the least

variant directions but also, for each basis vector, there is an associated eigenvalue λi which

is proportional to the variance in that direction. Hence one can calculate the percentage of

variance described from removing one or more of these POD dimensions by,

Λ =

r<d∑
i=1

λi

d∑
i=1

λi

= Fraction of variance described, (2.13)

where d is the dimension of the design vector and r a positive integer less than d. This leads to

a natural way of deciding which and how many dimensions to remove. Prior to optimisation, a

total variance described by a reduced problem can be set and then subsequently the maximum

number of dimensions can be removed while this percentage is still described. The optimiser

can then converge in this smaller space, the removed dimensions can then be considered again

and the full optimisation restarted at this point.
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Firstly, to use a POD technique a sample of points is needed. In this work, we denote the

POD basis calculated from a collection of vectors X = [X1, . . . , Xk] ∈ Rd×k by {λi, hi}di=1 =

POD(X). Here, λi ∈ R are the singular values corresponding to each hi ∈ Rd. The ensemble

of vectors to be passed to the POD analysis are a collection of iteration paths from preliminary

optimisations starting from {X0
j }Nj=1, i.e. ϕε1(X0) = [ϕε1 (X0

1 , I) , . . . , ϕε1 (X0
N , I)], where

I ∈ Rd×d is the identity matrix and X0 = [X0
1 , . . . , X

0
N ]. This ϕε(X0) is referred to as the

training set with training set tolerance ε1. This methodology closely follows that in Ghisu et

al.[98]. The aim of such a transformation is that a rotation of basis such that the first basis

vector points in the dominant direction of the observed optimisation paths may help with

the numerical conditioning of the problem.

This work will make use of Algorithm 3 which describes a three-step algorithm which

makes use of basis rotation and reduction. Given a set of initial conditions {X0
i }Ni=1, a

preliminary ensemble of optimisation trajectories in the original basis are computed using

Algorithm 1 to a relatively large tolerance ε1 > 0. Next, POD is applied to this ensem-

ble of trajectories to determine the most dominant optimisation directions and a reduction

proportion 0 < Λ ≤ 1 is selected. A new basis H is formed of the POD vectors and an

initial optimisation, to tolerance ε1, is performed in only a fraction Λ of the most dominate

directions. Using the outputs of this initial, coarse, optimisation as initial conditions a final

set of optimisations are then performed in the full rotated basis to a convergence tolerance

0 < ε2 < ε1. Note finally that applying Algorithm 3 with Λ = 1 results in a rotated basis

with no dimension reduction.
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Algorithm 3 Simultaneous optimisation in a rotated/reduced basis.
inputs {X0

i }Ni=1 ⊂ Rd satisfying 0 ≤ X0
i ≤ 1, 0 < ε2 < ε1, 0 < Λ ≤ 1.

for i = 1 to N do
X i ← ϕ̄ε1(X0

i )
end for
{hj, λj}dj=1 ← POD ([X1, . . .XN ])
H ← [h1, . . . , hd]

r ← argmax
1≤s≤N

{∑s
j=1 λj∑N
j=1 λj

≤ Λ
}

for i = 1 to N do
Yi ← ϕ̄∗ε1

(
H>X0

i , {hj}rj=1

)
Yi ← ϕ̄∗ε2 (Yi, H)
X∗i ← Yi

end for
return {X∗i }Ni=1 ⊂ Rd.
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Chapter 3

Two Dimensional Aeroservoelastic

Model

This Chapter introduces a common aeroelastic model, composed of a thin aerofoil with

a compliant trailing edge and mounted on springs, which will be used to investigate the

optimisation strategies of Chapter 2. The aerodynamic model used is able to describe a thin

aerofoil undergoing arbitrary deformations, however, here it is limited to describe the motion

of the compliant trailing edge. Once the state-space equations for the open-loop system are

derived it is coupled to an LQG controller which relies on values of the pressure difference

over the camberline to build an observer state. Control is achieved, albeit saturated, through

the position of the trailing edge. A full aeroservoelastic design optimisation is then defined

for the closed-loop system. Design variables are chosen to span the three ASE fields, i.e.

structural, aerodynamic and control. This chapter introduces the mathematical model and

optimisation problem that are subsequently investigated in Chapter 4.

68
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(a) Camberline description (b) Trailing edge description
Figure 3.1: Visualisation of aerofoild model.

3.1 Aeroelastic Model

This section details how the aeroelastic forces are derived for the model in Figure

3.1. The model assumes that an aerofoil can be represented by its camberline and the

fluid can be approximated by a 2D potential flow. The model can be written in state-

space form, which allows for the addition of a controller and for external gust excitation. A

camberline approximation works well when the flow remains attached, which requires small

angles of attack and small deformations. Furthermore, 2D potential flow is incompressible,

irrotational and inviscid. In physical terms this corresponds to high Reynolds number and

low mach-numbers. A review of several aerodynamic modelling methods was included in

[127]. It compared the difference in gust responses between steady 2D theory; unsteady 2D

theory with Wagner and Küssner functions; Unsteady Vortex Lattice Method (UVLM); and

Doublet-Lattice Method (DLM). Kier [127] concluded that the steady strip theory is fastest

to react to the gust load while the unsteady strip theory is the slowest. Steady strip theory

and VLMs (Vortex Lattice Methods) tend to overestimate loads. The aerofoil’s structural

support is modeled by linear pitch and plunge springs connected to the elastic axis, at a

distance ξa from its centre. The aerofoil has a half chord length of b and has a streamwise

velocity of V∞. The trailing edge can deform smoothly from the point labeled ξh in Figure

3.1. Note that ξ, the chordwise direction, will be defined non-dimensionally, with ξ = −1

and ξ = 1 corresponding to the leading edge and tail, respectively.
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3.1.1 Deformation Representation

So that this model can be reduced to a state space form, the shape of the aerofoil is

assumed to lie in the span of a finite basis of functions. Such mode shapes, yi (ξ), will be

superimposed to describe the aerofoil’s shape. The mode shapes can be chosen arbitrarily

but it will be shown in Section 3.1.8 that it is advantageous for them to be orthogonal under

some metric. Once mode shapes have been selected, the displacement y(ξ, t) of any point on

the chord can be described by,

y (ξ, t) = yY (ξ)Y (t) + yα (ξ)α (t) +
nmo∑
i=3

yi (ξ)Di (t) , −1 ≤ ξ ≤ 1, t ≤ 0. (3.1)

The mode shapes yi, yY , yα are functions of the chordwise direction ξ only, while the temporal

coefficients Y (t), α(t), Di (t) depend on t, the time coordinate. Note that we retain specific

notation for the heave and pitch degrees of freedom. In particular, Y (t) is the temporal

coefficient of the heave degree of freedom and α (t) is the temporal coefficient of the the pitch

degree of freedom. The mode shapes associated with the heave and pitch motion are given

by,

yY (ξ) = 1 and yα (ξ) = b (ξea − ξ) . (3.2)

Note that only a finite number of mode shapes, nmo, are used and, hence, only deformations

that belong to the space spanned by {yi (ξ)}nmoi=3 are possible. For brevity, we will interchange-

ably denote yY (ξ) = y1(ξ), yα(ξ) = y2(ξ), Y (t) = D1(t) and α(t) = D2(t). Hence the motion

of the camberline can be described by,

ẏ (ξ, t) =
nmo∑
i=1

yi (ξ) Ḋi (t) and ÿ (ξ, t) =
nmo∑
i=1

yi (ξ) D̈i (t) , (3.3)

where ˙(·) := d
dt
.
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3.1.2 Pressure

The unsteady 2D forces on the aerofoil are derived from the distribution of pressure

above and below the plate. The pressure can be found via the unsteady Bernoulli equation,

p (ξ, t) = −ρ
(
u2 (ξ, t)

2 + ϕ̇ (ξ, t)
)

+ p0. (3.4)

The Bernoulli equation holds when the flow is irrotational and the density, ρ, is constant.

Here u is the local flow velocity on the velocity, ϕ(ξ, t) is the flow potential and p0 an

irrelevant constant since only the pressure difference, ∆p, is needed to construct the eventual

state-space model for the aerofoil’s motion, defined in (3.6). The local flow velocity, i.e. the

velocity the aerofoil experiences locally, is given by

u(ξ, t) = V∞ + ϕ′ (ξ, t) . (3.5)

Now, (3.4) can be used with (3.5) to obtain an expression for the pressure difference over the

aerofoil,

∆p (ξ, t) := plower − pupper = 2ρ (ϕ̇ (ξ, t) + V∞ϕ
′ (ξ, t)) . (3.6)

Note that this is an exact expression and not a linearisation, since the quadratic terms simply

cancel out. An expression for pressure will be useful later to mimic pressure readings along

the aerofoil for the input to a dynamic observer.
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3.1.3 Non-Circulatory Potential

To begin, an expression for the velocity potential, ϕ needs to be derived. The full

derivation can be found in [128] and follows the same method as [51]. The velocity potential

is split into two contributions arising from non-circulatory effects ϕnc and circulatory effects

ϕc, such that, ϕ(ξ, t) = ϕnc(ξ, t)+ϕc(ξ, t). The potentials ϕnc and ϕc are built from point flow

sources such that all the modeled boundary conditions are satisfied, for example no flow is

allowed to pass through the camberline. For completeness a derivation of the non-circulatory

potential, ϕnc, is presented here. Physically, the non-circulatory potential arises due to the

fact that air cannot pass through the aerofoil. Its effects are instantaneous and lead to the

extra apparent mass an aerofoil experiences due to the air around it.

It can be shown [51] that a sheet of sources with strength σ (ξ1, t) on the upper side of

the camberline and a sheet of sources with strength −σ (ξ1, t) on the lower side leads to the

potential,

ϕnc (ξ, t) = b

4π

∫ 1

−1
σ (ξ1, t) ln


(ξ − ξ1)2 +

(√
1− ξ2 −

√
1− ξ2

1

)2

(ξ − ξ1)2 +
(√

1− ξ2 +
√

1− ξ2
1

)2

 dξ1. (3.7)

The source strength will be chosen so that there is no fluid velocity through the camberline.

This is achieved by a Neumann boundary condition on the camberline of the aerofoil i.e.

u(ξ, t).n(ξ, t) = Vy(ξ, t), (3.8)

where u is the fluid velocity on the camberline, n is the normal vector of the camberline

and Vy is the surface velocity normal to the camberline. Since, a source strength of σ (ξ, t)
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corresponds to a normal flow velocity of

Vy (ξ, t) = σ (ξ, t)
2 , (3.9)

we can choose the source strength such that it matches the surface normal velocity Vy corre-

sponding to a camberline y(ξ, t), defined in (3.1), in a free-stream flow of V∞. Physically this

Vy can be thought as arising from two contributions. The first arises from vertical motion of

the camberline, i.e ẏ (ξ, t), given in (3.3)

V 1
y (ξ, t) =

nmo∑
i=1

Ḋi (t) yi (ξ) . (3.10)

The second is due a vertical component of the free-stream velocity V∞ being induced by the

curvature of the camberline, this is given by

V 2
y (ξ, t) = V∞

nmo∑
i=1

Di (t) y′i (ξ) , (3.11)

where ()′ := d
dξ
. These two contributions V 1

y , V 2
y can be summed and used in (3.9) for an

expression for σ (ξ, t) that can be substituted into (3.7). This leads to the following:

ϕnc (ξ, t) = ϕ1 (ξ, t) + ϕ2 (ξ, t) , (3.12)

where

ϕ1 (ξ, t) = b

2π

nmo∑
i=1

Ḋi (t) fy,i (ξ) (3.13)

and

ϕ2 (ξ, t) = b

2πV∞
nmo∑
i=1

Di (t) f∂y,i (ξ) , (3.14)
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with fy,i (ξ) and f∂y,i (ξ) defined as

fy,i (ξ) =
∫ 1

−1
yi (ξ1) ln


(ξ − ξ1)2 +

(√
1− ξ2 −

√
1− ξ2

1

)2

(ξ − ξ1)2 +
(√

1− ξ2 +
√

1− ξ2
1

)2

 dξ1 (3.15)

f∂y,i (ξ) =
∫ 1

−1
y′i (ξ1) ln


(ξ − ξ1)2 +

(√
1− ξ2 −

√
1− ξ2

1

)2

(ξ − ξ1)2 +
(√

1− ξ2 +
√

1− ξ2
1

)2

 dξ1. (3.16)

Note that these integrals come from the integral in (3.7) and are functions of only the pre-

determined yi (ξ), hence, can be calculated prior to any temporal simulations. Efficient time

simulations are vital if they are to be used within a design optimisation algorithm.

3.1.4 Circulatory Potential

The circulatory potential is driven by the unsteady wake that is convected downstream

of the aerofoil. This wake contains information about the history of the flow around the

aerofoil and it is assumed that the wake convects downstream linearly at the free stream

velocity V∞. The derivation on the circulatory potential follows the same principles as the

non-circulatory, with the aerofoil modeled as a distribution of point vortices and a Neumann

boundary condition being enforced. However, a further condition, on the fluid’s circulation,

is enforced to physically realise the flow. Circulation is defined by a closed-path line integral,

Γ :=
∮

ΩF
u.dξ. (3.17)

Whenever Bernoulli’s equations holds the flow will have a constant circulation for a given

fixed closed-path, this is often refereed to as Kelvin’s Theorem. Hence, we can also enforce
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the condition that
dΓ
dt

= 0. (3.18)

This is achieved by including a unsteady wake, modeled as a distribution of point vortices

being convected downstream from the trailing edge. The magnitude of the wake vortices is

equal to the circulation created on the aerofoil, by the dynamic motion, but opposite in sign

thus keeping the circulation constant. A further condition also needs to be enforced, namely

the Kutta Condition. This ensures the flow is unique and that the flow is not singular at the

trailing edge, i.e

lim
ξ→1

∣∣∣∣∣∂ϕ (ξ)
∂ξ

∣∣∣∣∣ <∞. (3.19)

Theodorsen [51] showed that the velocity potential at ξ due to a point vortex of strength

−∆γ located at 1 < ξ0 <∞ and one of strength ∆γ at 1
ξ0

is given by,

ϕξ0 (ξ) = −∆γ
2π arctan

√1− ξ2
√
ξ2

0 − 1
1− ξξ0

 . (3.20)

Although ∆γ is still unknown fluid field resulting from this potential does satisfy Kelvin’s

Theorem (3.18). If we define ∆γ := γ (ξ0) dξ0 we can then sum the effect of these point

vortices over the wake, i.e. from ξ0 = 1 to ξ0 = ∞, for an expression for the circulatory

potential

ϕc(ξ, t) = − 1
2π

∫ ∞
1

γ(ξ0) arctan
√1− ξ2

√
ξ2

0 − 1
1− ξξ0

 dξ0. (3.21)
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The non-circulatory potential (3.12) and the circulatory potential from the whole wake are

summed and differentiated to give,

lim
ξ→1

∂ϕ (ξ)
∂ξ

= lim
ξ→1

∂

∂ξ
(ϕnc (ξ) + ϕc (ξ))

= lim
ξ→1

(
1√

1− ξ

[
1

2π

∫ ∞
1

√
ξ0 + 1√
ξ0 − 1γ (ξ0) dξ0 + 1

2πV∞
N∑
i=1

Di (t)Hdydξ,i . . .

+ 1
2π

N∑
i=1

Ḋ (t)Hy,i

])
, (3.22)

where the mode shape integrals Hy,i and Hdy,i are given by,

Hy,i = −2
∫ 1

−1

yi (ξ1)
√

1− ξ2
1

ξ1 − 1 dξ1 (3.23)

Hdy,i = −2
∫ 1

−1

y′ (ξ1)
√

1− ξ2
1

ξ1 − 1 dξ1. (3.24)

Now γ(ξ0) can be chosen, implicitly, using the Kutta condition in (3.19), so that (3.22) is

finite. We define

Q := 1
2π

∫ ∞
1

√
ξ0 + 1√
ξ0 − 1γ (ξ0) dξ0 = − 1

2πV∞
N∑
i=1

Di (t)Hdy,i −
1

2π

N∑
i=1

Ḋ (t)Hy,i. (3.25)

Since this is only a implicit expression for γ (ξ0) a new function C, Theodorsen’s function

[51], is defined so the circulatory lift and circulatory moment do not directly depend on γ (ξ0).

Theodorsen’s function is defined as,

C (γ) =

∫∞
1

ξ√
ξ2−1

γ (ξ) dξ∫∞
1

ξ+1√
ξ2−1

γ (ξ) dξ
. (3.26)

Theodorson [51] continues to show that if γ (ξ0) is assumed to take the form of a traveling

wave, i.e. γ (ξ) = γ0e
i(k(V∞t−ξ)), then the integrals in (3.26) are known and reduce to a ratio
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of Hankel functions

C (k) = H
(2)
1 (k)

H
(2)
1 (k) + iH

(2)
0 (k)

, (3.27)

where k = ωb/V∞ is a reduced frequency.

3.1.5 Aerodynamic States

For the unsteady wake effects, captured within the circulatory potential, to be written

in state-space form they must be approximated, as in the work of Von Karman and Sears

[129]. This is achieved in two parts. Firstly, one could use a rational function approximation

of (3.27) or equivalently, as is done here, approximate the Wagner function Φ(s), which is

simply a Laplace transformation the of the Theodorson function, with an exponential series,

i.e

Φ (s) = 1−
nin∑
j=1

aj exp (−bjs) (3.28)

where s = V t
b

is the non-dimensional time, {aj} ∈ R and {bj} ∈ R are curve fitted by

least squares to the Wagner function and nin is the number of approximation terms used.

The second step is to introduce a new set of variables that allow the time lag effects to be

linearised. New states are introduced, namely the aerodynamic states, so an approximation

on the product of Q, from (3.25), and C, from (3.27), can be be made such that,

QC = Q (t)
1−

∑
j=1

aj

+
∑
j=1

zj. (3.29)

The zj make up the Duhamel integral part of the time-lag effects and can be written as

zj (t) = bjajV∞
b

∫ t

0

(
Q (t′) e−

bjV

b
(t−t′)

)
dt′. (3.30)
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When the aerodynamic states are written explicitly in this form it is easy to see that they

contain information of the history of the aerodynamics, since the integral is from t′ = 0

until t′ = t (3.30) can be differentiated to find a linear ordinary differential equation for the

aerodynamic states, i.e

żj + bjV∞
b

zj = bjajV∞
b

Q (t) . (3.31)

Equation (3.31) shows that the aerodynamic states decay exponentially, when unforced, with

inputs from the rigid body motion and deformation states.

3.1.6 Forces and Moments

By integrating over the pressure difference, (3.6), the following expressions for the

normal force, N , and moment about the leading edge,MLE, are arrived at,

N = b
∫ 1

−1
∆p (ξ) dξ (3.32)

and

MLE = −b2
∫ 1

−1
(ξ + 1) ∆p (ξ) dξ, (3.33)

here we define a clockwise moment as positive. The moment about any point, −1 ≤ ξ ≤ 1,

is given by,

M (ξ) =MLE +N b (1 + ξ) . (3.34)
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The normal force due to non-circulatory effects is given by,

N nc =
∫ 1

−1
∆pncdξ

= b
∫ 1

−1
2ρ (ϕ̇+ V∞ϕ

′) dξ

=
nmo∑
i=1

b
∫ 1

−1
2ρ
([

b

2πD̈ify,i + b

2πV∞Ḋif∂y,i

]
+ V∞ϕ

′
)
dξ

= ρb2

π

nmo∑
i=1

(
D̈i (t)Fy,i + V∞Ḋi (t)F∂y,i

)
+ 2ρV∞ [ϕ (ξ)]1−1︸ ︷︷ ︸

=0

, (3.35)

the last term vanishes due to its definition in (3.7), while the new terms are defined as

Fy,i =
∫ 1

−1
fy,i (ξ) dξ (3.36)

and

F∂y,i =
∫ 1

−1
f∂y,i (ξ) dξ. (3.37)

The lift, N , and moment force,M, can be thought as an input to the rigid body motion in

heave and pitch. They are functions of the aerodynamics only and will act as forcing terms

to the structure.

3.1.7 Heave Motion and Pitch Motion

With expressions for the lift and moment lineraised with the aid of the additional

aerodynamic states the equations of motion for heave and pitch can be formulated. Firstly,

any point on the aerofoil will experience a local accelation of,

Ω (ξ, t) = Ÿ (t) + α̈ (t) (ξea − ξ) b+
nmo∑
i=3

D̈i (t) yi (ξ) . (3.38)
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Hence, using Newton’s second law of motion one can write,

∫ 1

−1
m (ξ) Ω (ξ, t) dξ + kY Y (t) = N (t) (3.39)

where N is the total normal force given by (3.32) and kY is the heave linear spring stiffness.

Similarly, the equation for pitch motion is given by

b
∫ 1

−1
(ξ − ξa)m (ξ) Ω (ξ, t) dξ + kαα (t) =M (ξea) (3.40)

where M (ξea) is defined in (3.34) and kα is the pitch linear spring stiffness.

3.1.8 Compliant aerofoil structural model

The deformation of the of the aerofoil ỹ(ξ, t) is defined as the motion of the camberline

independent of the heave and pitch motion. The dynamics of the deformations are approxi-

mated using an Euler-Bernoulli model,

∂2

∂ξ2

(
EI

∂2ỹ

∂ξ2

)
+ ρ(ξ)∂

2ỹ

∂t2
= ∆p (ξ, t) + Pfi(ξ, t), (3.41)

where ρ (ξ) is the local density of the beam and Pfi are the local fictitious inertial force due

to the beam not being in an inertial frame, i.e. the beam will feel forces due to its own

acceleration. The second order derivative in time leads to oscillating solutions (when stable),

which is physically what would be expected of stiff beam. The acceleration of the local frame

of reference is given by

Ωframe (ξ, t) = Ÿ (t) + α̈ (t) (ξea − ξ) b, (3.42)
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which implies

Pfi = −Ωframe (ξ, t) ρ (ξ) = −
(
Ÿ (t) + (ξea − ξ) bα̈ (t)

)
ρ (ξ) . (3.43)

Since the Euler-Bernoulli equation is an infinite dimensional, locally defined, PDE, it is

useful approximate the equation by projecting it onto a finite space as already done for the

aerodynamic in (3.1). A typical method is to use the beam’s free vibration modes {yi (ξ)}nmoi=3

so that the beam’s motion is approximated by

ỹ(ξ, t) ≈
nmo∑
i=3

yi(ξ)Di(t). (3.44)

Physically, if the beam was held in vacuum in the shape of an eigenmode yi (ξ) it would

oscillate at a frequency of ωi when released. The vibration modes are defined by (3.45),

∂2

∂ξ2

[
EI

∂2yi
∂ξ2

]
− ω2

imiyi = 0 for i = 3, . . . , nmo. (3.45)

where the modal mass mk is defined by,

∫ 1

−1
yiρykdξ = miδik for k = 3, . . . , nmo. (3.46)

Note that (3.46) also shows that the modes are orthogonal. Thus, the beam dynamics can be

separated into nmo − 2 ordinary differential equations that describe the aerofoil non-locally.

To achieve this separation, (3.41) is multiplied by yk and integrated over the length of the

aerofoil,

miD̈i +miω
2
iDi − b

∫ 1

−1
ykPfi(ξ, t)dξ − b

∫ 1

−1
yk∆p (ξ, t) dξ = 0. (3.47)
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for i, k = 3...nmo. To reduce (3.47) to an ODE the ξ and t dependencies still need to be

separated in the integral terms. This is simple for the first integral,

∫ 1

−1
ykPfi(ξ, t)dξ = −Ÿ (t)

∫ 1

−1
ykρ(ξ)dξ − α̈(t)b

∫ 1

−1
yk(ξea − ξ)ρ(ξ)dξ. (3.48)

One can see that all the integrals (3.48) are constant once the mode shapes yk and density

ρ are chosen. Hence, they can be calculated ahead of any time domain simulations. The

second integral, which uses the pressure difference defined in (3.6), also decomposes into a

similar, albeit much longer, form. However, a key point that this work takes advantage of is

that majority of the required integrals are linear in yi(ξ), as with the integrals in (3.48). Five

of the integrals, all of which can be found in [128], are non-linear in yi(ξ), one such example

is

PI9i,k =
∫ 1

−1

∂fy,k
∂ξ

(ξ1)yi(ξ1)dξ1, (3.49)

where fy,i(ξ) is defined in (3.15) and is a function of yi(ξ). The fact that most the integrals

are linear in yi(ξ) will be used to accelerate the optimisation of an aerofoil with a compliant

trailing edge flap as explained in Section 3.4.2.

This derivation from a one-dimensional Euler-Bernoulli allows for the modelling of 2D,

potential, aerodynamics forces over an arbitrarily deforming camberline. Specifically, this

approximation is only valid when the flow remains attached, i.e. high Reynolds numbers and

low mach-numbers.

3.1.9 Open-loop State-Space form

To complete the formation of the aeroelastic model a external, a vertical gust model

is included. This requires the introduction of new states {gj}ngu
j=1 similar to the aerodynamic
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states in Section 3.1.5. These new states are used as a finite approximation to the Küssner

function so that unsteady effects of a vertical gust can be modeled.

The states are now aggregated into a single state vector,

x =
[
Y, α, Ẏ , α̇, D1..., Dnmo , Ḋ1..., Ḋnmo , z1..., znin ..., g1..., gngu

]>
, (3.50)

where x ∈ Rn, with n = 4 + 2nmo + nin + ngu. Note that the derivatives are also included in

the state vector, this allows the system to be written as a first order ODE,

ẋ (t) = Ax (t) +Bww(t), (3.51)

where A ∈ Rn×n, Bw ∈ Rn and the gust input w(t) ∈ R. This system is built from the heave

(3.39) and pitch (3.40) equations in Section 3.1.7, the beam model equations 3.47 in Section

3.1.8, the aerodynamic states equations (3.31) in Section 3.1.5 and a similar set equations

for the unsteady gust input.

3.2 Aeroservoelastic Model

3.2.1 Trailing edge state

The use of multiple mode shapes to approximate the camberline can be used to model

a flexible beam under aerodynamic forcing and fixed to springs at the elastic axis, as in

[128]. Instead, we only concerned in creating a model that can be used in a computationally

inexpensive aeroservoelastic design optimisation, rather than modelling chordwise flexibility.

This can be achieved by using only one mode shape yi(ξ) to describe the motion of a compliant
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trailing edge flap. This does not limit the validity of the aerodynamics over this shape nor

does it limit this model to a trivial design space. In fact, with the considerations made in

this sub-section, the shape of the smoothly attached trailing edge flap can be designed with

arbitrary precision. Although, it is unlikely that the manufacturing of a trailing edge flap

that deforms as such is physically realisable it does allow this work to investigate a sufficiently

computationally simple design optimisation that includes optimisation over aerodynamic

design variables. In the context of more complex models with many degrees of freedom

one could instead use aerodynamics design variables such as aspect ratio, wing twist, wing

sweep etc.

The shape of the flap is defined by

y(t) := S (ξ) =


0 for − 1 ≤ ξ ≤ ξh,

Sβ (ξ) for ξh ≤ ξ ≤ 1,
(3.52)

where ξ is non-dimensionalised by the half-chord length, so that −1 ≤ ξ ≤ 1 from the leading

edge to the trailing edge and ξh is the hinge point of the actuator. The shape function, Sβ (ξ),

is defined by an arbitrary number of parameters sr within a polynomial expansion about ξh,

Sβ (ξ) = (1− ξh)∑p
r=2 sr

p∑
r=2

sr
(ξ − ξh) r
(1− ξh)r

. (3.53)

Note that the series starts at r = 2 to ensure that the trailing edge attaches smoothly to the

camberline. This formalisation allows for an aerodynamic variable to be optimised via the

parameters sr. The shape of the aerofoil at time t is given by,

ỹ(ξ, t) := s (ξ, t) = β (t)S (ξ) . (3.54)
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ξ = ξh ξ = 1

β′

l

(1− ξh) sin β′

Figure 3.2: Definition of the trailing edge shape and its physical meaning.

Since the system is linear the scaling of this function is arbitrary. It has been chosen so that

Sβ (1) = 1 − ξh, meaning that for small angles the state β (t) is approximately the angle of

the flap. This is clarified in Figure 3.2: given an input β (t), the angle β′ made by joining

the trailing edge of the aerofoil to the hinge point can be approximated by

β′ ≈ sin β′ = (1− ξh)
l

β ≈ β. (3.55)

The dynamics of the trailing edge are derived from the Euler-Bernoulli model described in

Section 3.1.8. The trailing edge is assumed to elastically oscillate around an input u(t), which

is described by

mββ̈ (t) +mβω
2
β (β (t)− u (t)) = F (t) , (3.56)

where F represents the aerodynamic and inertial generalised forces acting on the trailing

edge [128], and mβ is given by

mβ = b3
∫ 1

−1
ρ (ξ)S2

β dξ. (3.57)

where b is the semi-chord and ρ (ξ) is the density of the aerofoil, described in the next section.

The open-loop state-space of this system is given by,

ẋ (t) = Ax (t) +Bww(t) +Buu(t), (3.58)
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where Bu ∈ Rn and x ∈ Rn, with n = 6 + nin + ngu, is given by

x =
[
Y, α, Ẏ , α̇, β, β̇, z1..., znin ..., g1..., gngu

]>
. (3.59)

Note this is a special case of the generalisation made in 3.59 as the mode shapes defining the

aerofoil’s deformation have been limited to only describing the deformation of a compliant

trailing edge flap.

3.2.2 Mass distribution

Since the aerofoil model is a lumped-parameter structural dynamics model mass and

stiffness can be assigned independently. We will enforce that stiffening the aerofoil will require

adding more mass. Hence the density of the aerofoil is modeled as,

ρ (ξ) =


ρr
(
ω2
y + ω2

α

)
for − 1 ≤ ξ < ξh,

ρrω
2
β for ξh ≤ ξ ≤ 1,

(3.60)

where ωy and ωα are the heave and pitch natural frequencies of the linear springs seen in

Figure 3.1 and ρr = 1 kgs2m−1 is a constant of proportionality between the frequencies and

density. Integrating this density distribution over the aerofoil gives a total mass of

Mtot = bρr
(
(1 + ξh)

(
ω2
y + ω2

α

)
+ (1− ξh)ω2

β

)
. (3.61)

It can be observed that a stiffer wing, with higher natural frequency, will be heavier. If one

was investigating a higher fidelity model mass and stiffness might not be independent, for

example, for a structural box model of cantilever wing the geometry of the box prescribes

the mass and stiffness.
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3.2.3 Controller and Observer

An LQG controller and observer will be created for the aerofoil to form the control

input u (t) from pressure sensors on the chord. The controller and observer can be designed

separately. The controller is defined by a linear quadratic minimisation

min
K

∫ T

0

(
QyY

2 (t) +Qαα
2 (t) +R (Kx)2 (t)

)
dt, (3.62)

where Qy and Qα are control weightings to be used as design variables, whereas R penalises

the control input and is given by

R = (1− ξh)ω2
β. (3.63)

Therefore, the input penalty is proportional to the mass of the flap, i.e. a heavy flap would

require more control energy. Note that Qy, Qα and R must be positive for a solution to

(3.62) to exist.

The observer dynamics are formed from a series of pressure sensors and the control

input,

y (t) = Cx (t) +Du (t) , (3.64)

for matrices C ∈ Rnp×n, where np is the number of pressure sensors. The estimated state

vector x̂ satisfies,
˙̂x = Ax̂+Buu+ L (y − Cx̂) . (3.65)

The observer gain L ∈ Rn×np is calculated by the Kalman filter problem [130],

min
L

lim
t→∞

E
[
(x (t)− x̂ (t)) (x (t)− x̂ (t))T

]
, (3.66)
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where E [.] is the expectation in response to a stochastic input with known variance. Both

K and L are found using the lqr and kalman packages in MATLAB that solve (3.62) and

(3.66) via Riccati equations.

To restrict the authority of the control saturation has been introduced. Note that this is

the only non-linear component of the model. The addition of saturation introduces a physical

limit on the performance of the controller. The saturation model is

u (t) =



u+ for u > u+,

Kx̂ (t) for |u| ≤ u+,

−u+ for u < −u+.

(3.67)

Low control activity is not optimal for performance but a controller that acts too aggressively

leads to a system with too much saturation, which in this model leads to unstable dynamics.

For all results presented in this work, the saturation limit of u+ = 5◦ is imposed. One

would also expect saturation to be included, as it is here, in models of higher complexity.

Note, when modelling aerodynamic and/or structural non-linearities, such as the saturation

described above, time-domain considerations are often required [14].

3.2.4 Model Parameters

Not all the parameters within the model have been discussed, however, Table 3.1 lists

those remaining parameters needed to reproduce the current model. The density of air affects

the matrices A, Bu and Bw in (3.58) as described by Gaunaa [128].
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Parameter description Value
Density of air 1 kgm−3

Length of the chord 2m
Position of elastic axis ξea = −0.4

Flap hinge ξh = 0.8

Table 3.1: Remaining model parameters.

3.3 Optimisation

3.3.1 Design variables

With the goal to optimise a full ASE system the design variables chosen have been

taken from each of the three fields: structral, aerodynamic and control. First, structural

parameters are chosen to be ωy, ωα and ωβ; the natural frequencies of the heave, pitch and

trailing edge. These are not only proxies for the flexibility of aerofoil but also define the total

mass and the position of the centre of mass, which characterises the stability of the system.

The control law will also be optimised by means of the variables Qy and Qα, introduced in

(3.62). These variables will weight the control law on whether to preference either the heave

or pitch motions when stabilising the system. The aerodynamic shaping, i.e. the trailing

edge, will be achieved by design of the polynomial coefficients in (3.53). In this investigation,

only two of these coefficients will be optimised over, s2 and s3, the rest will be set to zero.

Finally, the placement of two pressure sensors on the camberline, p1 and p2, will be designed

as to optimise the observer design. In summary there are nine design variables in the design

vector X,

X =
(
ωy ωα ωβ Qy Qα s2 s3 p1 p2

)T
. (3.68)
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3.3.2 Cost function

The cost function to be minimised during the aerofoil design is made up of both a static

measure of performance and a dynamic performance measure, the reason for this choice is

justified Section 4.2.1. This work, as described in Chapter 1, is motivated by increasing

demand for efficient aircraft, which can be physically limited by an aircraft’s mass. Hence,

the static measure J1 (X) is the total mass, a common attribute in which a reduction is

sought. Specifically, this is given in (3.61), that is,

J1 (X) = Mtot = bρr
(
(1 + ξh)

(
ω2
y + ω2

α

)
+ (1− ξh)ω2

β

)
. (3.69)

The dynamic measure J2 (X) of the aerofoil is defined by the time integral of the total elastic

energy of the system,

J2 (X) =
∫ T

0

[
kyY

2 (X; t) + kαα
2 (X; t)

]
dt, (3.70)

where ky = Mtotω
2
y is the heave spring stiffness, kα = Itotω

2
α is the pitch spring stiffness,

T defines the time interval being considered and Itot is the total moment of inertia of the

aerofoil. It is shown in Chapter 4 that a time-domain metric such as this is important in

the context of a saturated model. For example, if the states Y and α diverge in the interval

[0, T ] one would expect a relatively large J2(X), thus biasing the optimiser to designs that

do not diverge, at least in the chosen interval. This motion is in response to a vertical gust

input given by,

w (t) =


w0
(
1− cos

(
πV t
l

))
for 0 ≤ t ≤ 2l

V

0 else
, (3.71)
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where V is the test free-stream velocity of the aerofoil, w0 is the amplitude of the gust and

l is the length of the gust. A value of T = 50 was chosen as it is large enough to allow

for any transient motion to decay, while not causing excessive computational effort. The

external disturbance, w, feeds into the dynamics via (3.58). This objective function minimises

the stress over a gust response explicitly. This would be key if the design’s longevity and

reliability were important as minimising stress will lower long term fatigue. This choice of

cost function is further explored comprehensively in Section 4.2 and expanded to include a

range of responses from numerous gusts, a common industry practice. The total cost function

J (X) will simply be given by

J (X) = J1 (X) + J2 (X) . (3.72)

3.3.3 Constraints

The optimisation will be constrained by two non-linear constraints and by bounds on

the design vector.

Design vector bounds: These bounds ensure that the solution is physical, for example,

that the mass is non-negative and that the pressure sensors are on the aerofoil. The design

vector will be rescaled by these upper and lower limits so that each component is between

0 and 1, i.e 0 ≤ Xi ≤ 1 for all i. This normalisation will facilitate the comparison of the

variability of each design variable over an optimisation.

Flutter speed: Flutter is a dynamic instability that in linear models lead to oscillatory

and divergent wing responses, whereas, in non-linear models flutter is normally characterised

by limit cycle oscillations. The closed-loop linear flutter speed is defined as the lowest positive
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free-stream velocity in which the closed-loop dynamics are linearly unstable. Specifically, in

this model the lowest velocity such that there exists an eigenvalue of A − BuK with a non-

negative real part. Note that A, Bu and K are all functions of V . A constraint on this

linear flutter speed will be enforced. To mimic a flight safety margin, the aerofoil will be

constrained to experience a free-stream velocity of 80% of its linear flutter speed, i.e.

V ≤ 0.8VF , (3.73)

where VF is the linear flutter speed defined as

VF (X) := sup{V : Re(λi(A−BuK)) < 0, for all i = 1, . . . , N + 6}. (3.74)

c1 (X) = V − 0.8VF ≤ 0. (3.75)

This is a key constraint that is considered early in the design process of real aircraft, fur-

thermore, the physical aircraft’s flutter speed is extensively investigated as part of the test

flights.

Trailing edge shape: It is expected that a trailing edge with larger arc length will be

advantageous to the controller, since in this case it will be able to generate a bigger force

with the larger surface. Hence, if no constraint is imposed, optimal designs will often have

non-monotonic trailing edges, which are physically unrealistic. As such it is necessary to

implement a constraint on the trailing edge to ensure it remains monotonic. This can be

achieved by,
d

dξ
Sβ (ξ) ≤ 0, ξh ≤ ξ ≤ 1, (3.76)
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where Sβ is defined in (3.53). This constraint will be written as,

c2 (X) = max
{
dSβ
dξ

(ε) : ξh ≤ ε ≤ 1
}
≤ 0. (3.77)

Now, concatenating the non-linear inequalities as c = [c1, c2]> the optimisation problem can

be written as,

min
X

J (x(X), X) (3.78)

such that Ā (x(X), X) = 0, (3.79)

c (X) ≤ 0, (3.80)

0 ≤ X ≤ 1. (3.81)

3.4 Optimisation Implementation

3.4.1 Solution method

Throughout the paper optimisations are performed using a gradient based interior point

algorithm within the MATLAB fmincon function. Interior point algorithms can be used to

minimise non-linear cost-functions constrained by non-linear functions either by equality or

inequality relationships. The interior point algorithm works by instead solving a sequence,
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in µ > 0, of equality constrained problems defined by

min
X,C

J (X)− µ
∑
i

ln (Ci) , (3.82)

such that Ā (X) = 0, (3.83)

c (X) + C = 0, (3.84)

0 ≤ X ≤ 1. (3.85)

where there are as many Ci as there were inequality constraints. The goal of an interior point

algorithm is that as µ decreases the solution to this approximate minimisation problem should

tend to the solution of the original problem. In Chapter 4 information about the Hessian

is not passed to MATLAB and hence the approximate minimisation problem is solved by

Newton steps in (X, C) using approximations of the Hessian. Iterations are stopped when

|Xn −Xn−1| < ε, where ε is the design vector tolerance condition. One can also consider

a measure of first-order optimality, which are based on the Karush-Kuhn-Tucker conditions

and can be outputted by fmincon, to further assess whether if the iterations have terminated

due to finding a minimum or the algorithm has simply satisfied the design vector tolerance

condition. It must be noted that first-order optimality equal to zero is a necessary condition

for a minimum but not a sufficient condition.

3.4.2 Optimisation acceleration

As mentioned in Section 3.1.8 there are a number of integrals that can be computed

“offline” before any time simulations greatly decreasing the computational effort. Further

acceleration is possible for investigating different designs. Many of the required integrals are
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linear in the mode shape, which in our example is given be Sβ(ξ) defined in (3.53), i.e if

Sβ(ξ) = γ1S1
β(ξ) + γ2S2

β(ξ) (3.86)

then

I(Sβ(ξ), ξ) = γ1I(S1
β(ξ), ξ) + γ2I(S2

β(ξ), ξ), (3.87)

where I(Sβ(ξ), ξ) is an example of one of said linear integrals. Using this, the majority of

the required integrals can be computed over the entire design space by first calculating

I2 = I((ξ − ξh)2, ξ) and I3 = I((ξ − ξh)3, ξ). (3.88)

Then for any point in design space the linear integrals are known and equal to,

I(Sβ(ξ), ξ) = (1− ξh)∑3
r=2 sr

3∑
r=2

sr
Ir

(1− ξh)r
. (3.89)
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Chapter 4

Design Optimisation of an

Aeroservoelastic Aerofoil

This chapter uses the model described in Chapter 3 as a test bed for aeroservoelastic design

optimisation. The aeroelastic model is first used in a relatively simple design optimisation to

highlight how complexities in the design space can limit a gradient based optimiser. Subse-

quently the aeroservoelastic system is investigated. Initially a frequency-domain constraint

is considered in an attempt to limit the effects of the control saturation on the design op-

timisation. It is concluded that frequency-domain metrics would be insufficient, justifying

the use of a time-domain statistic in the cost-function. Finally, the full design optimisation

problem is evaluated using the algorithms described in Chapter 2.

96
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4.1 Model Verification

Verification of the implementation of the ASE model was accomplished by setting the

shape of the trailing edge to a flat plate, i.e.

Sβ (ξ) =


0 −1 ≤ ξ ≤ ξh,

(ξh − ξ) ξh ≤ ξ ≤ 1.
(4.1)

A plot of non dimensional flutter speed against the non dimensionalised hinge spring fre-

quency for the three degree of freedom (heave, pitch and flap rotation) linear system, has

been compared to those by Zeiler [131] with Figure 4.1 indicating that there is excellent

agreement between both implementations. The evaluation of the current model requires

the computation of integrals such as the ones described in (3.15) and (3.16), which here

is achieved by discretising the chord into 100 uniform segments and integrating with the

trapezium rule. A discretisation of 100 was chosen as when compared to a discretisation of

50 the non-dimensional flutter speed had a relative percentage difference of 0.001%, hence it

was concluded that sufficient convergence had been achieved. Furthermore, a discretisation

of 100 has been implemented throughout the remainder of the Chapter.

To further ensure the reliability of the solutions a study was conducted to insure time

domain results were independent of the time step δt. The study performed simultaneous

optimisations on 100 randomly selected initial design conditions (X i
0)100
i=1 and converged to

100 final designs (X i
∗)100
i=1. The cost function J(X i

∗; δt) of these final designs was evaluated

using a δt = 10−2 s or 10−3 s and it was found that maxi
∣∣∣J(Xi

∗; 10−2)−J(Xi
∗; 10−3)

J(Xi
∗; 10−2)

∣∣∣ < 0.0001.

Hence, it was concluded that a δt = 10−2 s was sufficient for the results presented here.
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Figure 4.1: Non-dimensional flutter speed, Vf/ (bωα) against a non-dimensionalised hinge
spring frequency, ωβ/ωα for a flat plate, flat flap camberline model. The current code is
compared to results from [131].

4.2 Structural Optimisation

To clearly demonstrate how design space complexities can cause sensitivity to initial

conditions in a design optimisation we initially investigate a relatively simply problem. Con-

sider the problem in which only the natural frequencies ωy, ωα are optimisation variables, and

that the system is uncontrolled. That is, Qy = 0 = Qα defined in (3.62), the measurement

locations p1, p2, which characterise the matrix C defined in (3.64), are not required, and

ωβ, s2, s3 are fixed1. We consider the problem of minimizing the total mass Mtot, given by

(3.61), subject to the simple dynamic constraint that the open-loop system (3.58) is asymp-

1For the example in this section, ωβ = 5, s2 = 0.2, s3 = −0.3
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totically stable, i.e. flutter free. This corresponds to solving

min
ωy ,ωα

ω2
y + ω2

α

subject to Re(λi(A)) < 0, i = 1, . . . , N + 6,
(4.2)

where λi(A) denotes the ith eigenvalue of the state matrix A.

Feasible regions of the (ωy, ωα) design space are indicated in Figure 4.2 (a) with dark

grey-shaded areas indicating parameter values corresponding to unstable dynamics. Inter-

actions between the three structural frequencies contribute to open-loop instability in the

regions ωα ≈ ωy and ωβ . ωα, ωy . 2ωβ, with the resulting lack of design-space connected-

ness influencing the performance of a gradient-based optimisation strategy, as those discussed

in 1.1.2. For example, each of the three feasible regions in Figure 4.2 satisfying ωα ≥ 10 pos-

sess a clear local minimum with respect to the cost ω2
α + ω2

y, and an optimisation initialized

each such region converges to the respective local minimum (selected optimisation trajec-

tories are shown with initial condition a solid square and converged solution a solid disc).

The region of design space containing the global minimum, which for this example lies at

approximately ωα ≈ 2.5 ≈ ωy, is highlighted in Figure 4.2 (b). The fact that the minimum

lies in a cusp of design space contributes to the fact that its region of attraction (i.e., the

set of initial conditions which converge to it—shaded light-grey) is severely restricted. This

has important implications for optimisation strategies: even for such a simple example, the

complexity of the design space can be such that the global minima (or even the local minima

at (ωα, ωh) ≈ (1, 5)) are only obtained from small subsets of design space. Consequently, a

large sample of initial conditions—and a consequent increase in computational cost—may be

required to explore the full range of designs using a given optimisation strategy. Further-

more, since this example is perhaps the simplest that can be considered within the chosen

aeroelastic framework, it is not unreasonable to expect that adding extra design variables or
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Figure 4.2: (a) Convergence of gradient-based optimisation trajectories to minimize ω2
α +ω2

y

subject to a flutter constraint with ωβ = 5. (b) Neighbourhood of the global minimum its
basis of attraction (light-gray area).

imposing additional constraints will only lead to a further increase in design-space complex-

ity. However, such a pessimistic view is not entirely accurate, as we will see next. Figure

4.3 provides an example in which an expansion of design space is beneficial for optimisation

performance. In particular, we now consider the case in which the optimisation problem (4.2)

is solved but with the trailing edge frequency wβ as an additional variable optimised in the

interval ωβ ∈ [1, 20], simultaneously with ωα, ωy. Three initialisations are shown in Figure

4.3, each of which have initial trailing edge frequency ωβ = 14. The optimisation trajectories

are broadly similar to these presented in Figure 4.2 (a) for fixed ωβ. However, the trajecto-

ries are able to pass through the boundary—indicated by dashed lines—of the feasible set

for ωβ = 14 with no discernible decrease in the smoothness of convergence trajectories. The

background contour plot of Figure 4.3 indicates how this is achieved: contours indicate the

percentage of values of 1 ≤ ωβ ≤ 10 for which a point in (ωα, ωy)-space is feasible. Although

the trajectories are now able to traverse boundaries the final converged value is still a function

of initial starting point. Figure 4.3 (b) indicates why this is the case: The worst perform-

ing trajectory is path (i), which is initialized close to the unfeasible set for ωβ = 14. This

forces the optimiser to initially decrease ωβ to reduce the cost function, and the optimisation
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Figure 4.3: (a) Convergence of trajectories through three-dimensional design space and the
feasible set corresponding to ωβ = 14 (dashed lines). (b) Value of ωβ for the optimisation
trajectories identified in (a)

trajectory eventually converges to a local minimum corresponding to ωβ ≈ 4. In contrast,

path (iii) avoids this local minimum by maintaining ωβ ≈ 14 for initial iterations, and only

reducing ωβ to optimise the design when ωy, ωα are small.

It should be noted that, in this example, we have imposed the simplest possible dy-

namic constraint of open-loop stability. However, such a constraint does not guarantee good

dynamic performance, nor indicates whether a design is amenable to closed-loop control.

One characteristic evident from the optimisation trajectories in Figures 4.2(a) and 4.3(a) is

that converged designs lie on the boundary of the feasible set, in this case corresponding

to marginal stability. Hence, control is required for acceptable performance. Now, if we

strengthen the dynamic constraint to incorporate closed-loop performance, yet still expect

an optimiser to obtain designs on the boundary of new constraint set, care must be taken

to ensure that such design points represent robust designs. This is especially pertinent since

saturation is included in the studied model.
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4.2.1 Constraints for Closed-Loop Performance

To optimise closed-loop performance of a design with parameters X, given by (3.68), a

necessary constraint is that the system is closed-loop stable, that is, A−BuK is stable. For

aeroelastic problems it is natural to attempt to form a robust version of this constraint by

imposing that the system is stable for a range of free-stream velocities containing the design

point V∞. To this end, a safety margin is imposed such that the flutter speed of a feasible

design must be at least a proportion C1 > 1 greater than the designed cruise velocity, that

is,

VF (X) ≥ C1V∞. (4.3)

It should be noted that although (4.3) is technically a constraint on closed-loop stability

under full-state feedback u = −Kx, the separation principle [132] ensures that the output-

feedback u = −Kx̂ is also stabilising if the pair (C,A) is observable, which is typically the

case for the case of two pressure sensors that we consider.

We now consider whether (4.3) is sufficient for good closed-loop performance. To this

end, consider the time-domain metric

f(X,w, T ) =
∫ T

0
|y(X; t)|2 + |α(X; t)|2 dt, (4.4)

where y(X; t), α(X, t) are the heave and pitch trajectories of the closed-loop output-feedback

for a system with design parameters X, simulated from zero-initial conditions and forced by

an external disturbance (w(t))Tt=0. The use of a time-domain statistic is necessary since the

system contains a saturation nonlinearity, whose influence may not necessarily be affected by

a linear constraint of the form (4.3). Indeed, Figure 4.4 shows the trajectory of an optimised

design vector X satisfying (4.3) with a 25% safety margin (C1 = 1.25), forced by a “1− cos”
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Figure 4.4: Heave response and control input under a “1−cos” disturbance, with and without
control saturation.

gust

w (t) =


w0
(
1− cos

(
πV∞t
l

))
, 0 ≤ t ≤ 2l

V∞
,

0, otherwise,
(4.5)

with amplitude w0 = 1m and length ` = 2b. The choice of a discrete gust, as opposed to a

continuous gust, is preferred in this Chapter as it allows for easier investigation of the stability

of the systems studied. It can be seen in Figure 4.4(a) that if saturation is not imposed then

the control rejects the gust effectively, stabilizing the system within approximately two gust

lengths. However, upon imposing control saturation—evident in Figure 4.4(b)—despite the

trajectory y(X, t) being initially broadly similar to the unsaturated case, divergence occurs

and f(X,w, t) → ∞ as t → ∞. Hence, even a seemingly conservative constraint ensuring

linear closed-loop stability at free-stream velocities 25% greater than the design condition is

not sufficient to guarantee nonlinear stability of the system. A standard method of avoiding

saturation is to tune the closed loop control in order to ensure that the input is bounded

as a function of the expected disturbance magnitude. This quantity can be estimated by

considering the transfer function Tuw from disturbance w to control input u of the output-

feedback system. In particular, by considering the coupled state-observer dynamics (3.58),
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(3.65) and the feedback u(t) = −Kx̂, it is shown in Appendix A that

Tuw(s) =
(

0 −K
)sI − A −BuK

LC sI − (A− LC −BuK)


−1Bw

0

 . (4.6)

Since ‖u‖2 ≤ ‖Tuw‖∞‖w‖2 and, additionally, a sinusoidal disturbance w with frequency ω is

attenuated at the control input u with gain |Tuw(iω)|, it is natural to attempt to constrain

the magnitude of the control input by requiring that

‖Tuw‖∞ := sup
ω
|Tuw(iω)| ≤ C2, (4.7)

where C2 may be chosen appropriately. We note that a more simplistic way of achieving this

aim would be to constrain the weight-ratios Qy/R,Qα/R in the control-gain cost function

(3.62). However, to specify a global bound on the control input u(t) would require ratios

which would depend upon the underlying system matrices, making such a condition non-

trivially X-dependent, and therefore difficult to specify. Instead, (4.7) represents a concise

constraint on the magnitude of the control and, indeed, is an elementary example of mixed

H2/H∞ control synthesis [133].

The effect of adding the constraint (4.7) is considered by performing an ensemble of

optimisations in the nine-dimensional design space X, initialized from 53 locations corre-

sponding to a grid of points in (ωy, ωα, ωβ)-space. We test stability of each converged design

by considering the time-domain statistic f(X,w(t), 50), where w(t) is, as above, the gust

distribution (4.5) with unit amplitude and length 2b. Sampling over design space in this way

will also allow us to test the robustness of the optimiser with respect to the initial starting

condition. Figure 4.5 shows, for varying values of the constraint C2, the percentage of con-

verged designs which satisfy the relatively loose performance objective f(X,w(t), 50) ≤ 100.
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Figure 4.5: The effect of constraining ‖Twu‖∞: percentage of converged designs (dashed line)
satisfying the time-domain performance metric; and mean value f̄ of metric for converged
designs (with standard errors).

For comparison, the converged (albeit unsaturated) trajectory shown in Figure 4.4 satisfies

f(X,w, 50) = 14.0. It can be seen in Figure 4.5 that imposing a tighter bound through

decreasing C2, limits the magnitude of the control action, reduces the influence of saturation

and, hence, results in a higher percentage of converged designs satisfying the performance

metric. However, even for very restrictive values of C2 it is still the case that less that half

of the optimisation trajectories do not converge to a design with acceptable closed-loop per-

formance. Furthermore, reducing C2 more than the plotted data leads to the optimisations

failing to converge to designs that satisfy all the constraints.

The low proportion of designs that managed to converge even for small values of C2

can be explained by Figure 4.6, which demonstrates how the feasible region changes as

C2 is lowered. It can be seen that the connectedness of the feasible region is degraded

considerably for C2 = 1 compared to C2 = 10, with Figure 4.6 indicating that the feasible

region (for C2 = 1) is partitioned into bands for larger values of ωα. This reduction in
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Figure 4.6: Feasible regions of a 2D slice (left) and zoomed area (right). Colour indicates
design is feasible for neither (dark grey), one (light grey) or both (white) values of C2 = 1, 10.

connectedness may explain why optimisation with a constraint imposed on Tuw fails to give

robust performance as the constraint is tightened. The zoomed area in Figure 4.6 uses a

higher discretisation to show, with more clarity, the structure of the feasible region. One

can see in the lower right of Figure 4.6 (b) a series of bands of feasibility that are not

connected for C2 = 1. These bands are connected for C2 = 10. Furthermore, there are

bands of infeasibility for C2 = 10—the dark grey bands on the left of 4.6(b)—although the

feasible regions between these bands are connected one might expect that such bands will

still adversely affect optimisation performance.

These results imply that even the minimal aeroelastic model with a single source of non-

linearity, considered here, must be treated in a non-linear optimisation framework. For this

reason, instead of attempting to address the nonlinear dynamics (saturation) via additional

constraints, we will next seek to indirectly penalize the effects of saturation through the

addition of a time-domain component of the cost function. So far, the optimisations have

only used a static measure of performance, i.e. the mass. Although the time domain response

f (X) has been constrained this was found to lead to designs that did not alleviate the external

gust significantly. However, as it will be seen next, if f (X) is included in the cost function
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instead of a constraint, designs are found with a better dynamic performance, i.e. a lower

f (X), with no increase in mass.

We therefore consider the following optimisation problem

min
X

Mtot(X) +
Ngu∑
i=1

f(X,wi, T )

subject to VF (X) ≥ C1V∞

2s2 + 3s3(1− ξh) ≥ 0,

|p1|, |p2| ≤ 1.

(4.8)

which includes: a closed-loop flutter constraint with safety margin C1; imposed monotonicity

of the trailing edge, to ensure that physically unreasonable designs are avoided; and the trivial

constraint that pressure sensors must lie on the aerofoil itself. The cost function seeks to

minimize a trade-off between total mass Mtot and dynamic performance under i = 1, ..., Ngu

external “1− cos” disturbances wi(t) given by

wi (t) =


1
2w0

(
1− cos

(
2πt
li

))
, 0 ≤ t ≤ 2li,

0, otherwise,
(4.9)

here w0 = 1m, Ngu = 3, and li = im. Note that all results in Section 4.3 will be based on

the optimisation problem defined in (4.8).

One can see that the cost function in (4.8) is comprised of two terms: the mass and a

measure of dynamic performance which, for brevity, we will denote f1 and f2. It is common

with cost functions with this structure to introduce weightings, W1 and W2, and define the

optimisation instead as

min
X

F (X;W1,W2), (4.10)
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where F (X,W1,W2) := W1f1 + W2f2. We chose to normalise our cost function so that over

a range of optimal solutions we had W1f1 ≈ W2f2. This gives designs that place equal

importance on the mass and dynamics. We found that W1 = W2 = 1 was a suitable choice

for this across the design space. However, if one wanted to obtain “low mass” designs, for

example, then one could let W1 � W2. This would cause the optimisation to prioritise

reducing mass at the expense of dynamic performance.

4.3 Aeroservoelastic Design Optimisation

4.3.1 Simultaneous and Sequential Optimisation Strategies

Greater benefit is expected to be achieved from using a simultaneous optimisation,

compared to a sequential optimisation, on highly coupled aeroservoelastic systems such as

the actuated aerofoil considered here. However, even though a sequential approach should

be sub-optimal it is possible that a simultaneous optimisation can fail to reach its potential

due to complexity in the design space.

It is possible to demonstrate how the level complexity of the model can change the

relative effectiveness between a simultaneous and sequential optimisation. This is achieved

by comparing optimal designs of the problem, defined by (4.8), at various free-stream ve-

locities V∞. Increasing the velocity scales the loads on the structure, and therefore also the

controls, but also makes flutter more likely. Therefore it is a suitable parameter to explore

the robustness of various optimisation architectures.

Using Algorithms 1 and 2 described in Chapter 2, simultaneous and sequential optimi-

sations are compared in Table 4.1 at various free-stream velocities and over a set of random
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V∞ms−1 εf̄ εcg εfunc εvar εt

2.5 2.7 0.1 160 -3.3 -1.0
3 0.1 -1.5 200 2.4 -20.4
3.5 -5.6 1.5 220 14.5 3.7
4 -8.1 4.7 520 18.6 80.7
4.5 -8.7 6.0 700 36.7 255
5 -8.4 6.2 540 20.6 181

Table 4.1: Relative errors (in percentage) from sequential to simultaneous optimisations.

initial conditions {X0
i }Ni=1 with N = 50 and ε = 10−8. The relative error from the sequential

optimisation to the simultaneous optimisation will be used to compare various quantities.

For a given quantity θ the relative error is defined as

εθ = θSim − θSeq

θSeq
. (4.11)

The quantities to be discussed are the following:

• The optimal function objective over the initial conditions, f̄(V∞) = mini f (ϕq,∗ε (X0
i )) .

• The mean position of the centre of mass over the initial conditions, cg.

• The mean number of function evaluations, func.

• The variance of the converged design vectors X∗i = ϕq,∗ε (X0
i ),

i.e. var(V∞) = 1
N

∑N
i=1

(
X∗i − X̄∗

)2
, where X̄∗ = 1

N

∑
iX
∗
i .

• The mean total CPU time, t.

It can be seen in Table 4.1 that for a smaller free-stream velocity the sequential optimisation

outperforms the simultaneous optimisation, giving a design with a 2.7% reduction in cost

function. This is likely caused by the extra complexity of a simultaneous optimisation, for

example, the simultaneous design space may contain extra local minimum that the optimiser
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Variable ω0
y ω0

α ω0
β Q0

y Q0
α a0

2 a0
3 p0

1 p0
2

Value 6.275 2.375 3.7 0 0 -0.5 -0.5 -0.5 0.5

cannot avoid. Alternatively, in simultaneous optimisation the design’s controller has greater

authority to manipulate the performance causing the design space to be relatively flatter and

hence the algorithm stopping due to satisfying the design vector tolerance condition rather

than finding a minimum. However, as the velocity increases the coupling of the control

design to the aerofoil becomes stronger for two reasons: the forces that the trailing edge is

able to generate increases with free-stream velocity, hence, at higher velocities the control

surface can exert a more significant effect on the dynamics, meaning that integration of its

design into the simultaneous optimisation is potentially advantageous. Second, as the free-

stream velocity increases, the volume of the feasible set of design space decreases due to the

flutter constraint, again implying an increasingly important role of the control design. In any

case, for V∞ ≥ 3.5ms−1 it is observed that simultaneous optimisation outperforms sequential

optimisation by at least 5%. An example of how a simultaneous optimisation can outperform

a sequential optimisation at higher velocities can be seen when looking at the paths through

design space taken by each method. A set of initial conditions is created such that

X ij
0 = {

[
ωiy, ω

j
α, ω

0
β, Q

0
y, Q

0
α, s

0
2, s

0
3, p

0
1, p

0
2

]>
: ω0

y ≤ ωiy ≤ ω0
y +Nδ andω0

α ≤ ωjα ≤ ω0
α +Nδ}.

This set forms a small two-dimensional box in (ωy, ωα) space in which ωiy = ω0
y + (i − 1)δ

and ωjα = ω0
α + (j − 1)δ. From these points both a simultaneous and sequential optimisation

is run and their path through (ωy, ωα, ωβ) space is plotted in Figure 4.7 for δ = 0.001 and

N = 10. When comparing simultaneous optimisation to sequential optimisation it can be

seen in Table 4.1 that at higher velocities the average position of the centre of gravity is

further aft, by as much as 6.2% of the chord. In general moving the centre of gravity towards

the tail leads to an aerofoil that is more prone to flutter instability. The placement of the
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Figure 4.7: Iteration paths from numerous close initial conditions from a sequential method,
blue, and a simultaneous method, green. The final design points of the simultaneous method
are marked with dark green circles. A convex hull has been plotted around these points along
with its projections in the ωy − ωα, ωα − ωβ and ωy − ωβ planes.
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centre of gravity in this model is calculated using the density in (3.60), i.e. the heavier the flap

is made relative to the aerofoil the more aft the centre of gravity. Since this is a more unstable

location such designs are often open-loop unstable. However, the open-loop instability allows

for faster actuation, and a corresponding decrease in the dynamic component of the cost

function f2 (X).

Although the simultaneous method is able to find better optimal designs it suffers from

greater sensitivity to initial conditions and requires more function evaluations. It must be

noted, that although all the sequential designs terminated at points in which MATLAB

outputted that a local minimum was found that the simultaneous designs terminated due to

satisfying the design vector tolerance condition. This would explain the large convex hull seen

in Figure 4.7. On average, over all the velocities in Table 4.1 a single cost-function evaluation

took 0.11 seconds — as with all results this was computed on an Intel core i7-4770 CPU.

This was consistent over all speeds and only varied significantly when evaluating marginally

stable or unstable designs. For example, the average number of function evaluations needed

for V∞ = 4.5ms−1 was 121.4 and 971.2 for the sequential and simultaneous optimisations,

respectively. Hence, the simultaneous optimisations spent approximately 93.5 seconds longer

on function evaluations (the average a sequential optimisation took 53.1 seconds). Note that

one might expect more proportionality between total CPU time and function evaluations in

a higher fidelity model that requires more time per function evaluation. This is due to fixed

costs not directly attributed to the cost-function evaluations, for example the time required

for Matlab to call fmincon, becoming proportionally less significant.

The increase in sensitivity to initial conditions can be seen both in Figure 4.7 and

Table 4.1. The percentage change in the variance of the optimal designs is as high as 36.7%

and the number of function evaluations increases by a factor of seven. In Sections 4.3.3
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and 4.3.4, we will discuss methods that reduce these unwanted consequences of simultaneous

optimisation.

4.3.2 Physical interpretation of the optimal results

As previously discussed, the centre of gravity further aft is a more unstable location.

These designs are often open-loop unstable, which is the general trend observed in Figure 4.2.

However, open-loop instability facilitates more aggressive control action for a given actuation

deflection which is desirable, due to the important role that saturation plays in the closed-

loop dynamics. In particular, closed-loop time-domain responses corresponding to tail-heavy

configurations are observed in Figure 4.8 to have smaller settling times when subjected to

the gust

w (t) =


1
2 (1− cos (πbt))ms−1 0 ≤ t ≤ 2 s,

0 otherwise.
(4.12)

This phenomenon can be isolated from other factors by artificially moving the centre of

gravity, by a distance 0.1b, while keeping the design vector constant. It can seen in Figure 4.8

that small changes in the centre of gravity can affect the time domain response and in

fact moving it towards the tail improves the response. The figure shows, in particular, the

amplitudes in heave and control input for mass offsets of ±5%.

4.3.3 Parametrisation

As the tolerance condition, ε, is decreased the best local minimum found f (X∗)—from

optimisations initialised from the starting set {X0
i }Ni=1, described in Algorithm 1—decreases.

This is shown in Figure 4.9. In Chapter 2 a reparameterisation technique was discussed that

used Proper Orthogonal Decomposition (POD) to rotate the basis in which the design vector
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Figure 4.8: Closed-loop responses of aerofoils with the same design vector but varied centre
of gravity and V∞ = 4.5ms−1. Centre of gravity is displaced a distance equal to 5% of the
chord towards the tail in Tail Heavy case and displaced the same distance towards the nose
for the Nose Heavy case.
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Figure 4.9: The lowest cost function found from each method, normalised by the lowest found
by the training set with ε = 1 × 10−8 and shown for a range of values for the training set
stopping condition ε.
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is defined. Figure 4.9 also shows that simply rotating the basis vectors, by use of Algorithm

3, can lead to the optimisation outperforming the best training set local minimum, found at

ε = 1× 10−8, by roughly 5% even for the larger values of ε. This rotated optimisation, label

POD in Figure 4.9, is shown to be approximately constant over eight orders of magnitude

of ε and always lies beneath the best local minimum found in the original basis. This result

is slightly counter-intuitive, for one, computational effort is invested in the formation of the

training set and then the optimiser is able to find a better solution regardless of the fact that

both methods are solving the same problem defined in (4.8).

4.3.4 Variable Selection

In Section 4.3.1 it has been shown that the aerofoil model studied here can benefit from a

simultaneous optimisation strategy. However, the simultaneous method suffers from increased

function evaluations and increased sensitivity to the initial conditions due to the complexity

of the design space. For computational efficiency it may be of benefit to temporarily optimise

over only a subset of the available decision variables. Thus, we now consider whether removing

complexity temporarily can help the optimiser obtain improved local minima. Since the goal

is to study automated MDO the process of removing complexity needs to be algorithmic

rather than user defined. This can be achieved by using a POD parametrisation as explained

in Chapter 2, Algorithm 3. This POD-based reduction strategy requires a choice of the value

of the reduction proportion parameter Λ. By defining

Λ(r) =
(
d−r∑
i=1

λi

)/(
d∑
i=1

λi

)
, (4.13)

the typical behaviour of Λ(r), seen across all samples collected, is presented in Figure 4.10. It

was found that choosing a value of Λ in the initial and relatively flat section of the Λ(r) graph
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Figure 4.10: Fraction of variance Λ described by a subset of d− r POD basis vectors.

Method εf̄ εfunc εvar

Rotation -2 -28.4 -22.3
Reduction -4 -37.5 -35.3

Table 4.2: Relative error (as a percentage) from the original basis optimisations to the POD
rotated optimisations and original basis optimisations to the reduction method.

(in this case between 1 ≤ r ≤ 4) leads to a good balance between final cost function, number

of function evaluations and sensitivity to initial conditions. Choosing Λ = 0.85 successfully

placed the reduction method in this flat section for all cases tested. The improvements from

using Λ = 0.85 can be seen in Figure 4.9. As with the rotation strategy plot, the reduction plot

is approximately constant and visibly outperforms the original simultaneous optimisations.

Further comparisons between the original basis, POD rotation method and reduction method

are found in Table 4.2. Both the POD rotation and reduction methods have successfully

attenuated some of the undesired consequences that were demonstrated in Figure 4.7 and

discussed in Section 4.3.1. While performing slightly better than the standard simultaneous

optimisation the investigated strategies have also reduced the number of function evaluations

needed and lowered the sensitivity to initial conditions. The percentage difference between

Distribution A Approved for Public Release, Distribution Unlimited 



4.4. Concluding Remarks 117

1 2 3 4 5 6 7 8 9

-100

-80

-60

-40

-20

0

20

40

60

80

100

Figure 4.11: Percentage difference between the final designs from the original basis and
Reduction method with X = [ωy, ωα, ωβ, Qy, Qα, s2, s3, p1, p2, ]>

the original basis final designs and the reduction method final designs for each component

has been shown in Figure 4.11. Interestingly the variance was reduced in all the components

except the structural variables. This could be due to the structural variables being the most

dominant variables in the problem. The reduction method is able to identify this and hence

varies the other variables less and instead searches the structural space more thoroughly.

4.4 Concluding Remarks

This Chapter started with the validation of the aeroelastic model discussed in Chapter

3. A simple open-loop aeroelastic optimisation was able demonstrated that the complexity

of design space, specifically how well the design space was connected, was a factor in the

performance of a gradient based optimiser. The effect of including control saturation was

investigated in Section 4.2.1. Examples where found that showed that even if our aeroservoe-

lastic system is linearly stable that the nonlinear time-domain response (due to saturation)
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could diverge. Since computing time-domain responses can be computationally demanding

frequency-domain methods were investigated. Although the frequency-domain method did

lead to more designs with convergent time-domain responses it was far from guaranteeing con-

vergence, with approximately 50% of designs still having divergent time-domain responses.

Furthermore, it was shown that design space connectedness was limiting this method from

achieving better results. Thus it was concluded that frequency-domain methods were not

a substitute for time-domain response evaluation. Hence, we choose to investigate a cost

function that included a metric of the time-domain response.

In Section 4.3.1 it was shown that a simultaneous optimisation strategy, compared to

a sequential strategy, was more beneficial at higher free-stream velocities. We argued this

is because at higher velocities the control design has more influence over dynamics as the

trailing edge flap is able to generate higher forces. While at lower velocities the benefit

of simultaneous design is outweighed by the added complexity to the design space. It was

also shown that simultaneous design promoted the design of aerofoils that had worse open-

loop properties. For example, the centre of gravity was typically further aft in simultaneous

designs, compared with sequential designs, a characteristic that in open-loop leads to more

unstable responses. However, in closed-loop this meant designs where able to reject gusts

quicker, this is analogous to why some fighter jets are open-loop unstable.

Finally using Proper Orthogonal Decomposition to reparametrise or temporarily re-

duced the number of design variables, a method described in Chapter 2 Algorithm 3, was

investigated. Both methods were shown to improve the robustness for simultaneous optimi-

sation strategies, specifically they decreased the sensitivity to initial conditions. Moreover,

they achieved this while producing designs with better performance, i.e. designs with a

lower cost-function value. These methods show promise in automating reparametrisation
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and variable reduction, which we have shown lead to an accelerated design optimisation.
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Chapter 5

Cantilever Model

The previous chapter used a relatively simple model to exercise the design optimisation

of aeroservoelastic systems. With the aim of investigating a more physically realistic and

complex model this chapter derives a state-space formulation of an aeroservoelastic cantilever

wing model. The model consists of a geometrically-nonlinear, slender-beam described by a

one-dimensional reference line that can deform in three-dimensional space; a two-dimensional,

potential aerodynamic model defined over the span of the beam and trailing edge flaps that

can vary in size and position. As described in Chapter 4 it was infeasible to include design of

the size or position of control surfaces in the spatially two dimensional aeroelastic optimisation

problem considered there, since it was always advantageous for the previous model to make

the control flap larger, i.e. ξh → −1. Although we do not include design optimisation of the

cantilever model it would allow one to include size or positioning of multiple control flaps

as design variables, the optimisation of which is key in the context of HALE aircraft, where

control surfaces can be used to replace structural weight and stiffness.

120
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5.1 Structural Model

The structural model consists of a geometrically-exact composite beam described with

an intrinsic formulation [56]. An intrinsic formulation uses velocities and strains as primary

variables, as opposed to the more common descriptions based on displacements and rota-

tions. A disadvantage of the intrinsic formulation is that one must integrate the velocities or

strains to recover displacement and rotations. However, an advantage is that the equations of

motion only contain quadratic non-linear couplings which will be of use in Chapter 6 where

sensitivities required for iterative optimisation are analytically computed.

Suppose that a straight cantilever wing with no sweep is modeled as a beam of length L

with centreline parametrised by a scalar s ∈ [0, L] and with dynamics expressed in intrinsic

co-ordinates

x1(s, t) =

v(s, t)

ω(s, t)

 , x2(s, t) =

 f(s, t)

m(s, t)

 , (5.1)

where v(s, t),ω(s, t) are the inertial and angular velocities and f(s, t),m(s, t) are sectional

internal forces and moments. For the linearised description of the dynamics considered here,

these variables are expressed in a frame (ei)3
i=1 local to the beam. A global frame (ex, ey, ez)

is chosen to be the span-wise, chord-wise and normal co-ordinates in the undeformed config-

uration, respectively. The position r(s, t) and rotation T (s, t) (which provides the transfor-

mation from the global to local frame) at each point of the beam are given by

∂r

∂t
= Tv,

∂T

∂t
= T ω̃, (5.2)

where ·̃ is the cross-product operator such that ṽw := v ∧ w. We now assume that the

beam is moving with constant velocity in the global stream-wise ey direction, but is clamped
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ez
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Figure 5.1: Definition of the global frame [ex, ey, ez]> and local frame [e1, e2, e3]>.

at one end to remain in the same unrotated (x, z)-plane, that is, r(0, t) = −V∞t ey and

T (0, t) = I3. In intrinsic co-ordinates, this condition and the assumption of a free endpoint

at s = L, corresponds to the boundary conditions

x1(0, t) = V∞

ey
0

 , x2(L, t) = 0. (5.3)

A depiction of the different frames, r and the free-stream velocity can be found in Figure 5.1.

Palacios adapted Hodges’ [134] model to show that the linearised dynamics of the beam
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satisfies the PDE

M
∂x1

∂t
− ∂x2

∂s
−Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = F (s, t),

C
∂x2

∂t
− ∂x1

∂s
+E>x1 − L1(x1)>Cx2 = 0,

x1(0, t) = V∞

ey
0

 ,
x2(L, t) = 0,

(5.4)

were F (s, t) contains all external forcing terms. Here, assuming an initially undeformed

beam, the matrix E is given by

E =

 0 0

ẽx 0

 ∈ R6×6, (5.5)

M = M (s) ∈ R6×6 and C = C(s) ∈ R6×6 are the spatially-dependent mass and compliance

matrix, respectively. The operators L1 and L2 are defined by

L1

v
ω

 :=

ω̃ 0

ṽ ω̃

 , L2

 f
m

 :=

0 f̃

f̃ m̃

 . (5.6)

5.2 Aerodynamic Model

An aerofoil with constant semi-chord b is assumed to exist at each location s of the

beam. Furthermore, it is assumed the aerofoils are at zero incidence in the beam axis and

that they have constant span-wise aerodynamic properties. It is assumed that aerodynamics

contribute to external forcing in (5.4) of the form F (s, t) = F AE(s, t) + FGU(s, t) + F β(s, t)
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where

F AE(s, t) =
(

0 Fa2(s, t) Fa3(s, t) Ma1(s, t) 0 0
)>

(5.7)

is defined in the local frame of reference. The remaining terms FGU and F β are the resulting

forcing due to external gusts and trailing edge flap deflections respectively and are to be

discussed later in Sections 5.4 and 5.5 of this Chapter. Appealing to classical unsteady

aerofoil theory, the forces and moments per unit length in (5.7) can be written, as in [135],

in terms of the local velocities x1 via

F AE = ρbA1(x1)x1 + ρb [V∞A2x1]
nin∑
j=1

2aAEj bAEj λj

 (5.8)

where ρ is the air density, b is the aerofoil semi-chord, aAEj , bAEj are aerodynamic coefficients

and (λj(s, t))ninj=1 are additional state-variables describing the unsteady aerodynamics as in

the aerofoil model described in Chapter 3, Section 3.1.5. By convention, ∑j a
AE
j = 1

2 . They

are influenced, in turn, by the local velocity of the aerofoil according to

λ̇j = κ>1 x1 −
V∞b

AE
j

b
λj, j = 1, . . . , nin, (5.9)

where κ1 :=
(

0 0 −1/b (1− ξea) 0 0
)>

. Here ξea is the parameter determining the

distance ξeab from the structural axis through which the aerodynamic forces are assumed to

act, ξea > 0 implies aerodynamic forces act fore of the structural axis. Finally, the operator

A1 : R6 → R6×6 and the matrix A2 ∈ R6×6 are given by

A1(x1) :=



0 0 0 0 0 0
0 −CD0v2

CLα
2 v3−CL0v2 −b(1−ξea)

CLα
2 v3 0 0

0 CL0v2−
(
CLα

2 +CD0

)
v3 0 b(1−ξea)CLα2 v2 0 0

0 b
(

(2CM0+ξeaCL0)v2−ξea
CLα

2 v3

)
0 b2(ξea−ξ2

ea− 1
2 )CLα2 v2 0 0

0 0 0 0 0 0
0 0 0 0 0 0

 (5.10)
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and

A2 = 1
2CLα



0 0 0 0 0 0

0 0 −1 0 0 0

0 1 0 0 0 0

0 ξeab 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



. (5.11)

Ignoring gust and flap inputs, the coupled aeroelastic system is formed by applying the

aerodynamic forcing F AE as an input to the structural PDE (5.4) and adding the coupling

equation (5.9) to obtain

M
∂x1

∂t
− ∂x2

∂s
−Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = ρbA1(x1)x1

+ ρb [V∞A2x1]
(
κ>AEλ

)
,

C
∂x2

∂t
− ∂x1

∂s
+E>x1 − L1(x1)>Cx2 = 0,

∂λ

∂t
+ V∞ελ =

[
κ>1 x1

]
1,

x1(0, t) = V∞

e2

0

 ,
x2(L, t) = 0,

(5.12)

Here,

κAE := (2aAEj bAEj )ninj=1, ε = diag
(
(bAEj /b)ninj=1

)
, λ = (λj)ninj=1, (5.13)

and 1 ∈ Rnin is a vector of units. Note that the equation for λ has to hold for all s, thus

when we project the equations onto nmo mode shapes in Section 5.6 each mode shape will

require its own set of aerodynamic states.
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5.3 Linearisation

We choose to linearize the PDE about an unloaded equilibrium point of the PDE

corresponding with constant velocity in the e2 direction. This linearisation does not simply

involve removing the quadratic nonlinearities present in the intrinsic formulation. In fact

when linearising around the forward flight conditions several linearised terms arise from the

quadratic nonlinearities. Note that in Chapter 6 we will solve the PDE to find the nonlinear

equilibrium, taking advantage of the relatively simply quadratic nonlinearities the intrinsic

formulation offers.

For the forward flight condition we linearise around the following state,

x0
1 = V∞

e2

0

 , x0
2 = 0, λ0 = 0. (5.14)

To verify that this indeed defines an equilibrium note that

κ>1 x
0
1 = 0, E>x0

1 = 0 = ∂x0
1

∂s
. (5.15)

We will assume that M(s)x0
1 =

(
V∞m22(s)e>2 0

)>
, which is justified in Section 7.1 This

implies

L1(x0
1)Mx0

1 = V 2
∞m22(s)

 0 0

ẽ2 0


e2

0

 = 0, 0 ≤ s ≤ L. (5.16)

Furthermore,

A1(x0
1)(x0

1) =
(

0 −CD0 CL0 b(2CM0 + ξeaCL0) 0 0
)>

(5.17)
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and for a thin, symmetric cantilever wing we can reasonably assume that the zero-angle-of-

attack lift/drag/moment coefficients are zero:

CL0 = CD0 = CM0 = 0. (5.18)

Now, for any x ∈ R6, define a matrices Ax,Lx ∈ R6×6 by

Axy := A1(x)y +A1(y)x, y ∈ R6,

Lxy := L1(x)My + L1(y)Mx, y ∈ R6.

(5.19)

Using the expressions for the operators A1, A2 and L1 it can be seen that

Ax0
1

:=
Ax0

1

V∞
= 1

2CLα



0 0 0 0 0 0

0 0 0 0 0 0

0 0 −1 b(1− ξea) 0 0

0 0 −ξeab b2
(
ξea − ξ2

ea − 1
2

)
0 0

0 0 0 0 0 0

0 0 0 0 0 0



, (5.20)

A2x0
1 = A2x

0
1

V∞
= 1

2CLα



0

0

1

ξeab

0

0



, (5.21)

Distribution A Approved for Public Release, Distribution Unlimited 



128 Chapter 5. Cantilever Model

Furthermore, using that L1(a)b = −L2(b)a

Lx0
1
x1 = L1(x0

1)Mx1 + L1(x1)Mx0
1 (5.22)

= L1(V∞e2)Mx1 − L2(V∞m22e2)x1 (5.23)

:= V∞Lx0
1
x1, (5.24)

where

Lx0
1

=



0 0 0 0 0 −m22

0 0 0 0 0 0

0 0 0 m22 0 0

m31 m32 m33 −m22 m34 m35 m36

0 0 0 0 0 0

−m11 +m22 −m12 −m13 −m14 −m15 −m16



. (5.25)

We now linearize (5.12) about the equilibrium point (x0
1,x

2
0,λ

0) by letting

x̂1 = x1 − x0
1, x̂2 = x2, λ̂ = λ, (5.26)

and, dropping the hats in the final equation, the PDE describing the evolution of the pertur-

bations becomes

M
∂x1

∂t
− ∂x2

∂s
−Ex2 + Lx0

1
x1 = ρbV∞Ax0

1
x1 + ρbV 2

∞

[
A2x0

1

] (
κ>AEλ

)
,

C
∂x2

∂t
− ∂x1

∂s
+E>x1 − V∞L1(e2)>Cx2 = 0,

∂λ

∂t
+ V∞ελ =

[
κ>1 x1

]
1,

x1(0, t) = 0,

x2(L, t) = 0.

(5.27)

Distribution A Approved for Public Release, Distribution Unlimited 



5.4. Gust Model 129

5.4 Gust Model

We are interested in investigating the gust response of the flexible wing, as we did in

Chapter 4. We analyse only the idealized case in which the velocity of a gust v(s, t) has the

form

v(s, t) = w(t)d(s)e3(s, t), 0 ≤ s ≤ L, t ≥ 0, (5.28)

that is, the gust is assumed to always act in the (local) direction perpendicular to the aerofoils

with a prescribed intensity w(t) and spatial distribution d(s). The influence of the gust is

assumed to act in a quasi-steady manner through the aerodynamic forcing terms by replacing

A1(x1)x1 7→ A1(x1 − v)(x1 − v),

A2x1 7→ A2(x1 − v),

κ>1 x1 7→ κ>1 (x1 − v).

(5.29)

Applying this transformation and applying the same linerisation as Section 5.3, with the

addition of lineristion around the state v(s, t) = 0, results in the following equations

M
∂x1

∂t
− ∂x2

∂s
−Ex2 + Lx0

1
x1 = ρbV∞Ax0

1
x1 + ρbV 2

∞

[
A2x0

1

] (
κ>AEλ

)
+ ρbV∞Ax0

1
vw(t),

C
∂x2

∂t
− ∂x1

∂s
+E>x1 − V∞L1(e2)>Cx2 = 0,

∂λ

∂t
+ V∞ελ =

[
κ>1 (x1 − v)

]
1,

x1(0, t) = 0,

x2(L, t) = 0,

(5.30)
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where

Ax0
1
vw(t) :=

Ax0
1
v

V∞
= 1

2CLα



0

0

−d(s)

−ξeab d(s)

0

0



w(t). (5.31)

5.5 Flap Input

Suppose finally that there are nfl rigid flaps with deflections (βl(t))nfll=1 on the trailing

edge of the wing, their location indicated by the span-wise flap shape function Slβ(s). For

example, a flap of length r at the tip of the wing would have the following flap shape function,

S1
β (s) =


0 for 0 ≤ s ≤ L− r

1 for L− r < s < L

(5.32)

The modification to the aerodynamic forcing experienced by the structure, is modeled by

adding the force F β = ∑nfl
l=1 ρbA3(x1)x1S

l
β(s)βl(t) where

A3(x1) :=



0 0 0 0 0 0

0 0 −CLβv2 0 0 0

0 CLβv2 0 0 0 0

0 (ξeabCLβ + 2bCMβ)v2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0



, (5.33)
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as throughout Section 5.3 F β is to be linearised about x0
1. Note that as with the gust model

this is a quasi-steady approximation. The linearisation of F β gives the linearised flap force

fβ,

fF (s, t) ≈
nfl∑
l=1
A3(x0

1)x0
1S

l
β(s)βl(t) =

nfl∑
l=1

ρbV 2
∞



0

0

CLβ

ξeabCLβ + 2bCMβ

0

0



Slβ(s)βl(t) (5.34)

=:
nfl∑
l=1

ρbV 2
∞BβS

l
β(s)βl(t). (5.35)

As the aerodynamic model is linear, this term is simply added to the right hand side of the

first equation in (5.30).

5.6 Galerkin Projection

5.6.1 Linear Normal Modes

The linearised PDE (5.30) has an infinite dimensional solution space. In order to solve

in the spatial-domain we use a separation of variables with a finite number of mode shapes,

x1 =
nmo∑
g=1

q1g(t)Φ1g(s), x2 =
nmo∑
g=1

q2g(t)Φ2g(s). (5.36)

In this work we use linear normal modes Φ1g, Φ2g of the intrinsic beam equation. Linearising

the intrinsic beam equation about the unloaded equilibrium x1 = x2 = 0 with no external
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forcing gives,

Mẋ1 − x′2 −Ex2 = 0,

Cẋ2 − x′1 +E>x1 = 0.
(5.37)

Substituting (5.36) into (5.37) leads to the following generalised eigenvalue problem

 0 ∂
∂s

+E
∂
∂s
−E> 0


 Φ1g

Φ2g

 = ωg

 M 0

0 −C


 Φ1g

Φ2g

 (5.38)

which is solved with the boundary conditions Φ1g(0) = 0 and Φ2g(L) = 0 for the cantilever

problem. Given that M and C are real and symmetric the eigenvalues ωg will always be

real and each positive eigenvalue will have an equal and negative counterpart. Note that no

assumptions have been made onM and C which could be fully populated. It can be shown

[135] that the linear natural modes can be normalised to satisfy

〈Φ1g,MΦ1p〉 = δgp = 〈Φ2g,CΦ2p〉, (5.39)

where 〈f , g〉 :=
∫ L

0 f(s) ·g(s)ds for f , g : [0, L]→ R6. In this continuous form the number of

eigenvalues will be infinite. However, if the equations are discretised the number of eigenvalues

will equal the number of degrees of freedom. In this work, the mode shapes will be assigned

values at nsp + 1 locations given by sr = r L
nsp

for r = 0, . . . , nsp. Values between these nodes

can be linearly interpolated, thus the integrals are given by

〈f , g〉 = L

nsp

nsp∑
r=0

[
f(sr) + f(sr+1)

2

]
·
[
g(sr) + g(sr+1)

2

]
. (5.40)

Note that at each location sr there are 12 degrees of freedom (6 from x1 and 6 from x2) except

at s0 and snsp where there are 6 degrees of freedom each due to the boundary conditions
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Φ1g(0) = 0 and Φ2g(L) = 0. Hence, the solution to the generalised eigenvalue problem in

(5.38) will have 12nsp eigenvalues.

5.6.2 Aerodynamic states

As in Chapter 3, in order to describe the aerodynamic model with a finite number

of states aerodynamic states λj(s, t) are needed. Since these aerodynamic states need to

be defined for all s we introduce the decomposed aerodynamic states qAEjg . The decomposed

aerodynamic states are to be substituted for the aerodynamic states (λj)ninj=1 in the modal

decomposition as follows

λj(s, t) =
nmo∑
g=1

[κ>1 Φ1g(s)]qAEjg (t), j = 1, . . . , nin, g = 1, . . . , nmo. (5.41)

Hence there are now nin × nmo variables for the aerodynamic states, i.e. each mode has nin

aerodynamic states. This decomposition is effective since if we assume the following

q̇AEjg = q1g −
V∞b

AE
j

b
qAEjg − 〈Φ1g,Mv〉, j = 1, . . . , nin, g = 1, . . . , nmo, (5.42)

then λ̇ + V∞ελ = [κ>1 (x1 − v)]1, as required for the evolution of the aerodynamic states λ

as stated in (5.30). It now remains to describe the temporal evolution and influence of the

aerodynamic states λ, or equivalently qAEjg , in a compact manner. To this end, note that if

we define q̇AE ∈ Rnmo·nin×1 such that,

qAE :=
(
qAE11 . . . qAE1nmo qAE21 . . . qAE2nmo . . . qAEnin1 . . . qAEninnmo

)>
, (5.43)
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then from (5.42)

q̇AE =



Inmo 0 −V∞b1
b
Inmo 0 · · · 0

Inmo 0 0 −V∞b2
b
Inmo

. . . ...
... ... ... . . . . . . 0

Inmo 0 0 · · · 0 −V∞bnmo
b

Inmo




q1

q2

qAE

+B1
ww(t), (5.44)

where

B1
w := −



〈Φ11,M [0, 0, 1, 0, 0, 0]>〉
...

〈Φ1nmo ,M [0, 0, 1, 0, 0, 0]>〉

〈Φ11,M [0, 0, 1, 0, 0, 0]>〉
...


∈ Rnin.nmo (5.45)

Letting 1 ∈ Rnin be a vectors of units, this can be written

q̇AE =
(
1⊗ Inmo 0 −V∞(ε⊗ Inmo)

)

q1

q2

qAE

+B1
ww(t). (5.46)

where ε is defined in 5.2 and ⊗ denotes the Kronecker matrix product [136].

5.6.3 State-Space Formulation

We now substitute the expansions (5.36) into the PDE (5.30). Taking the inner product

of the first line of the resulting equations with Φ1g, the inner product of the second equation
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with Φ2g and using the orthogonality relations (5.39) we have

q̇1p =
nmo∑
g=1

q2g〈Φ1p,Φ′2g +EΦ2g〉 − V∞
nmo∑
g=1

q1g〈Φ1p,Lx0
1
Φ1g〉

+ ρbV∞
nmo∑
g=1

q1g〈Φ1p,Ax0
1
Φ1g〉+ ρbV 2

∞〈Φ1p,A2x0
1〉
(
κ>AEλ

)

− ρbV∞
〈
Φ1p,Ax0

1
v
〉
w(t) + ρbV 2

∞

nfl∑
l=1
〈Φ1p, BβS

l
β(s)〉βl(t),

q̇2p =
nmo∑
g=1

q1g〈Φ2p,Φ′1g −E>Φ1g〉+ V∞
nmo∑
g=1

q2g〈Φ2p,L1(e2)>CΦ2g〉,

(5.47)

for each p = 1, . . . , nmo.

Now, integration by parts and cantilever boundary conditions, i.e. x1(0, t)x2(0, t) =

x1(L, t)x2(L, t) = 0, can be used to show that for each g, p, if wgp := 〈Φ1p,Φ′2g + EΦ2g〉,

then

〈Φ2p,Φ′1g −E>Φ1g〉 = −〈Φ1p,Φ′2g +EΦ2g〉 = −wgp. (5.48)

Note that when the linear normal modes are used wgp = ωgδgp. For terms arising from

linearisation of the terms nonlinear in x1,x2, define

sgp := −〈Φ1g,Lx0
1
Φ1p〉 (5.49)

tgp := 〈Φ2g,L1(e2)>CΦ2p〉. (5.50)

Next, recalling the expression for Ax0
1
, let

γgp := 〈Φ1g,Ax0
1
Φ1p〉 (5.51)
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and define matrices

W = diag(ωg) ∈ Rnmo×nmo , Γ = (γgp) ∈ Rnmo×nmo , (5.52)

S = (sgp) ∈ Rnmo×nmo , T = (tgp) ∈ Rnmo×nmo , (5.53)

upon which the structural equations can be written as

q̇1

q̇2

 =

V∞(ρbΓ + S) W

−W> V∞T


q1

q2

+

(〈Φ1g,R(s, t)〉)nmog=1

0

 , (5.54)

with the forcing term

R(s, t) = ρbV∞

(
V∞

[
A2x0

1

] (
κ>AEλ

)
−Ax0

1
v +

nfl∑
l=1

V∞BβS
l
β(s)βl(t)

)
. (5.55)

The states q1 and q2 in (5.54) need to be solved together with (5.46). We will now consider

each term in (5.55) in order to finish writing the equations of motion concisely. First, let

κ2 := A2x0
1 = 1

2CLα

(
0 0 1 ξeab 0 0

)>
, we have that

ρbV 2
∞〈Φ1g,A2x0

1〉
(
κ>AEλ

)
= ρbV 2

∞

nin∑
j=1

2aAEj bAEj 〈Φ1g(s),κ2λj(s)〉

= ρbV 2
∞

nmo∑
p=1

nin∑
j=1

2aAEj bAEj qAEjp 〈Φ1g(s),κ2κ
>
1 Φ1p(s)〉

= ρbV 2
∞

nin∑
j=1

2aAEj bAEj

nmo∑
p=1

hgpq
AE
jp

 , g = 1, . . . , nmo,

(5.56)

where hgp := 〈Φ1g,κ2κ
>
1 Φ1p〉. Letting

H := (hgp) ∈ Rnmo×nmo (5.57)
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we can therefore write the first term in (5.55) as

(
ρbV 2

∞〈Φ1g,A2x0
1〉
(
κ>AEλ

))nmo
g=1

= ρbV 2
∞

(
2a1b1H 2a2b2H · · · 2aninbninH

)
qAE

= ρbV 2
∞(κ>AE ⊗H)qAE

(5.58)

For the second term, pertaining to the vertical gust input, we define bWg := −ρb
〈
Φ1g,Ax0

1
v
〉

we can write

−ρbV∞
〈
Φ1g,Ax0

1
v
〉
w(t) =

(
bWg (V∞)w(t)

)nmo
g=1

, (5.59)

= B2
W (V∞)w(t), (5.60)

where

B2
W :=

(
bWg
)nmo
g=1
∈ Rnmo . (5.61)

Now define BW := [B1
W , 0, B2

W ]> ∈ Rn, where n = 2nmo +nmo.nin. The final term, relating

to the flap inputs, we define bβgl := ρb〈Φ1g, BβS
l
β(s)〉 so we can write

ρbV 2
∞

nfl∑
l=1
〈Φ1g, BβS

l
β(s)〉βl(t) =

((
V 2
∞b

β
glβ

l(t)
)nmo
g=1

)nfl
l=1

, (5.62)

= V 2
∞Bββ(t), (5.63)

where

Bβ :=
(
bβgl
)
∈ Rnmo×nfl and β(t) :=

(
βl(t)

)nfl
l=1
∈ Rnfl . (5.64)

Finally, the linearised aeroservoelastic equations of motion can be written in canonical state-
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space form,

q̇(t) =


V∞(ρbΓ + S) W ρbV 2

∞(κ>AE ⊗H)

−W> V∞T 0

1⊗ Inmo 0 −V∞(ε⊗ Inmo)

 q(t) +BW (V∞)w(t) + V 2
∞Bββ(t), (5.65)

:= A (V∞) q(t) +BW (V∞)w(t) + V 2
∞Bββ(t) (5.66)

with A(V∞) ∈ Rn×n, 1 ∈ Rnin and

q = (q1, q2, qAE)> , (5.67)

W = (wgp) ∈ Rnmo×nmo , wgp = 〈Φ1g,Φ′2p +EΦ2p〉, (5.68)

Γ = (γgp) ∈ Rnmo×nmo , γgp = 〈Φ1g,Ax0
1
Φ1p〉, (5.69)

H = (hgp) ∈ Rnmo×nmo , hgp = 〈Φ1g,κ2κ
>
1 Φ1p〉, (5.70)

S = (sgp) ∈ Rnmo×nmo , sgp = −〈Φ1g,Lx0
1
Φ1p〉, (5.71)

T = (tgp) ∈ Rnmo×nmo , tgp = 〈Φ2g,L1(e2)>CΦ2p〉, (5.72)

5.7 Concluding Remarks

In this Chapter we have introduced a cantilever wing model consisting of an intrinsic

beam model and two-dimensional aerodynamics, with gust and trailing edge deflection inputs

summarised in the PDE (5.4). We linearised this model and projected onto a finite number

number of modes, this allowed the PDE to be approximated in the state space formulation

in (5.66). This model will be verified in Chapter 7. An advantage of this model, compared
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to the previous model described in Chapter 3 and 4, is it allows the aeroelastic effects of

multiple control surfaces to be predicted.
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Chapter 6

Adjoint-based Optimisation

This chapter explores methods that can accelerate the gradient based design optimisation

investigated in this work. In Chapter 4 the “black-box” Matlab function fmincon for solving

the aeroservoelastic design optimisation problems. This uses numerical methods to approx-

imate gradients by finite differences. For example, to approximate the gradient of the cost-

function—fmincon needs to approximate this at each iteration—at least two cost-function

evaluations are needed per design variable for each gradient approximation. Instead, if the

gradients are known analytically instead of two function evaluations per variable, needed

by approximate methods, only one evaluation of the gradient is required per iteration. To

this end, this Chapter presents methods that do not require “black-box” functions and, fur-

thermore, uses analytic values for the gradients, which saves computational time, improves

accuracy and numerical robustness. The fact that the model described in Chapter 5, only

contains quadratic non-linearities, due to the use of the intrinsic formulation, means the

product-rule only needs to be used once per term, hence, easing the analytic evaluation of

the derivatives.

140
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6.1 Derivatives

In this Section, with a view to implementing gradient-based optimization techniques,

we develop expressions for the derivatives of terms appearing in the governing PDEs, which

were written as

M
∂x1

∂t
− ∂x2

∂s
−Ex2 + L1(x1)Mx1 + L2(x2)Cx2 = F (s, t),

C
∂x2

∂t
− ∂x1

∂s
+E>x1 − L1(x1)>Cx2 = 0,

(6.1)

where

L1

v
ω

 :=

ω̃ 0

ṽ ω̃

 , L2

 f
m

 :=

0 f̃

f̃ m̃

 . (6.2)

By convention, if G : Rn → Rm is a vector-valued function given by

G(x) =



g1(x)

g2(x)
...

gm(x)



and the Jacobian matrix ∂G
∂x
∈ Rn×m is defined by

[
∂G

∂x

]
ij

:= ∂gi
∂xj

, i = 1, . . . ,m, j = 1, . . . , n.

The following lemma contains results for differentiating matrix and vector products, whose

proofs we include for completeness.

Lemma 6.1.1. Suppose that x, y ∈ R3 and that A ∈ R3×3. Then
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(i) ∂
∂x

(Ax) = A;

(ii) ∂
∂x

(x ∧ y) = −ỹ;

(iii) ∂
∂x

(y ∧ x) = ỹ;

(iv) ∂
∂x

(x ∧Ay) = −Ãy.

(v) ∂
∂x

(x ∧Ax) = x̃A− Ãx.

Proof. (i) Since (Ax)i = ∑
j aijxj, it follows immediately that ∂

∂x
(Ax) = A.

(ii) Follows from (i) upon writing x∧y = −y∧x = −ỹx and (iii) is a trivial corollary.

(iv) Follows from (i) since x ∧Ay = −[Ay] ∧ x = −Ãyx.

(v) Noting that x ∧Ax = x̃Ax, the result follows from (i), (iv) and the product rule

for differentiation.

It is now possible to calculate derivatives of expressions involving the operators L1,L2.

Lemma 6.1.2. Suppose that x ∈ R6 and A ∈ R6×6. Then

(i) ∂
∂x

(L1(x)Ax) = L1(x)A− L2(Ax);

(ii) ∂
∂x

(L2(x)Ax) = L2(x)A− L1(Ax).

Proof. (i) Let

x =

v
w

 ∈ R6, and A =

A11 A12

A21 A22

 ,
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where v,w ∈ R3 and each Aij ∈ R3×3. Then

L1(x)Ax =

w̃ 0

ṽ w̃


A11v +A12w

A21v +A22w



=

 w̃A11v + w̃A12w

ṽA11v + ṽA12w + w̃A21v + w̃A22w

 .

Hence, using Lemma 6.1.1,

∂

∂x
(L1(x)Ax) =

 w̃A11 −Ã11v + w̃A12 − Ã12w

ṽA11 − Ã11v − Ã12w + w̃A21 ṽA12 − Ã21v + w̃A22 − Ã22w



=

 w̃A11 w̃A12

ṽA11 + w̃A21 ṽA12 + w̃A22



−

 0 ˜[A11v +A12w]
˜[A11v +A12w] ˜[A21v +A22w]

 .

Recalling the definitions (6.2) of L1,L2, the above equality can be written

∂

∂x
(L1(x)Ax) = L1(x)A− L2(Ax).

(ii) Similar to (i) note that,

L2(x)Ax =

0 ṽ

ṽ w̃


A11v +A12w

A21v +A22w



=

 ṽA21v + ṽA22w

ṽA11v + ṽA12w + w̃A21v + w̃A22w

 .
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Using Lemma 6.1.1,

∂

∂x
(L2(x)Ax) =

 ṽA21 − Ã21v − Ã22w ṽA22

ṽA11 − Ã11v − Ã12w + w̃A21 ṽA12 − Ã21v + w̃A22 − Ã22w



=

 ṽA21 ṽA22

ṽA11 + w̃A21 ṽA12 + w̃A22



−

 ˜[A21v +A22w] 0

˜[A11v +A12w] ˜[A21v +A22w]

 .

Again, by (6.2), it follows that

∂

∂x
(L2(x)Ax) = L2(x)A− L1(Ax).

Aerodynamic forcing acts on the PDE via both quadratic and bilinear (in x1 and λ)

terms. For this reason, it will be convenient to derive expressions for the Jacobians of general

quadratic expressions.

Lemma 6.1.3. Suppose that x ∈ R6 and let A : R6 → R6×6 be a linear operator given by

A(x) :=
6∑

k=1
xkA

(k)

for some A(k) = (a(k)
ij )ij ∈ R6×6, k = 1, . . . , 6. Then

∂

∂x
A(x)x =

6∑
k=1

xkQ
(k) =

(
A(1) · · · A(6)

)
(I6 ⊗ x) +A(x),

where Q(k) = (a(j)
ik + a

(k)
ij )ij ∈ R6×6, k = 1, . . . , 6.
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Proof. For each i = 1, . . . , 6,

(A(x)(x))i =
6∑

j,k=1
xka

(k)
ij xj ⇒

∂

∂x`
(A(x)x)i =

6∑
j=1

a
(`)
ij xj +

6∑
k=1

xka
(k)
i`

Now, [ 6∑
k=1

xka
(k)
i`

]6

i,`=1
= A(x),

and

 6∑
j=1

a
(`)
ij xj

6

i,`=1

=
(
A(1)x · · · A(6)x

)

=
(
A(1) · · · A(6)

)
(I6 ⊗ x),

and the result follows.

We now write the aerodynamic forcing term (5.10), described by the operator A1 in

this form.

Lemma 6.1.4. The aerodynamic forcing A1(x1)x1 can be expressed

A1(x1)x1 =
6∑

k=1
(x1)kA(k)

1 x1
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for matrices A(1)
1 = A

(4)
1 = A

(5)
1 = A

(6)
1 = 0,

A
(2)
1 :=



0 0 0 0 0 0

0 −CD0 −CL0 0 0 0

0 CL0 0 b(1− ξea)CLα2 0 0

0 b(2CM0 + ξeaCL0) 0 b2(ξea − ξ2
ea − 1

2)CLα2 0 0

0 0 0 0 0 0

0 0 0 0 0 0



and

A
(3)
1 :=



0 0 0 0 0 0

0 0 CLα
2 −b(1− ξea)CLα2 0 0

0 −
(
CLα

2 + CD0
)

0 0 0 0

0 −ξeabCLα2 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Furthermore,

∂

∂x1
(A1(x1)x1) = A1(x1) +

(
0 A

(2)
1 A

(3)
1 0 0 0

)
(I6 ⊗ x1)

Proof. Follows from (5.10) and Lemma 6.1.3.
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6.2 Equilibrium Under Constant Aerodynamic Forcing

In this section, we seek to develop fast computational methods of finding equilibrium

points of the PDE (5.12), which corresponds to finding x1,x2 and λ satisfying

∂x2

∂s
= −Ex2 + L1(x1)Mx1 + L2(x2)Cx2

− ρbA1(x1)x1 − ρb [V∞A2x1]
[
κ>AEλ

]
−

nfl∑
l=1

ρbA3(x1)x1S
l
β(s)βl,

∂x1

∂s
= E>x1 − L1(x1)>Cx2,

V∞ελ =
[
κ>1 x1

]
1,

x1(0, t) = V∞

e2

0

 ,
x2(L, t) = 0,

(6.3)

for given flight conditions ρ, V∞, and flap inputs βl. In equilibrium, it is therefore possible

to eliminate λ to obtain

V∞b
AE
j λj

b
= κ>1 x1 ⇒ κ>AEλ =

nin∑
j=1

2aAEj bAEj λj

= bκ>1 x1

V∞

nin∑
j=1

2aAEj

= bκ>1 x1

V∞
,
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since, as stated in Section 5.2, ∑j a
AE
j = 1

2 . Substituting this expression into the momentum

equation implies that we are required to solve

∂x1

∂s
= E>x1 − L1(x1)>Cx2,

∂x2

∂s
= −Ex2 + L1(x1)Mx1 + L2(x2)Cx2

− ρbA1(x1)x1 − ρb2 [A2x1]
[
κ>1 x1

]
−

nfl∑
l=1

ρbA3(x1)x1S
l
β(s)βl,

(6.4)

with the appropriate boundary conditions.

Lemma 6.2.1. The aerodynamic forcing [A2x1]
[
κ>1 x1

]
can be expressed as

[A2x1]
[
κ>1 x1

]
=

k∑
k=1

(x1)kA(k)
2 x1

for matrices A(1)
2 = A

(4)
2 = A

(5)
2 = A

(6)
2 = 0,

A
(2)
2 := 1

2CLα



0

0

1

ξeab

0

0



κ>1 , and A
(3)
2 := 1

2CLα



0

−1

0

0

0

0



κ>1 .

Furthermore,

∂

∂x1

(
[A2x1]

[
κ>1 x1

])
=

3∑
k=2

(x1)kA(k)
2 +

(
0 A

(2)
2 A

(3)
2 0 0 0

)
(I6 ⊗ x1)

Proof. Follows from (5.11) and Lemma 6.1.3.
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Lemma 6.2.2. The control input shape function A3(x1)x1 can be expressed

A3(x1)x1 = (x1)2A
(2)
3 x1

where

A
(2)
3 := A3(x1) :=



0 0 0 0 0 0

0 0 −CLβ 0 0 0

0 CLβ 0 0 0 0

0 (ξeabCLβ + 2bCMβ) 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0


Furthermore,

∂

∂x1
(A3(x1)x1) = (x1)2A3(x1) +

(
0 A

(2)
3 0 0 0 0

)
(I6 ⊗ x1)

Proof. Follows from (5.33) and Lemma 6.1.3.

We now rearrange the equilibrium condition equation (6.4) in the form

dx

ds
= G(x), x =

x1

x2

 ,

where G : R12 → R12 is the operator

G(x) :=

G1(x)

G2(x),

 (6.5)

with

G1(x) := E>x1 − L1(x1)>Cx2,
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and

G2(x) := −Ex2 + L1(x1)Mx1 + L2(x2)Cx2

− ρbA1(x1)x1 − ρb2 [A2x1]
[
κ>1 x1

]
−

nfl∑
l=1

ρbA3(x1)x1S
l
β(s)βl.

We can now write down an analytical expression for the Jacobian of G.

Proposition 6.2.3. Consider the quadratic mapping G : R12 → R12 given by (6.5). Then

∂G

∂x
=

 E> + L1(Cx2)> −L1(x1)>C

L1(x1)M − L2(Mx1)− ρbB(x1)− ρbBβ(x1)β −E + L2(x2)C − L1(Cx2)

 ,

where

B(x1) =
3∑
j=2

(x1)j
(
A

(j)
1 + bA

(j)
2

)

+
(
0 A

(2)
1 + bA

(2)
2 A

(3)
1 + bA

(3)
2 0 0 0

)
(I6 ⊗ x1)

and

Bβ(x1) := (x1)3A
(2)
3 +

(
0 A

(2)
3 0 0 0 0

)
(I6 ⊗ x1).

Proof. Follows from Lemmas 6.1.2, 6.1.4, 6.2.1 and 6.2.2.

6.2.1 Sensitivity of x2(L) to x2(0)

In order to efficiently compute an equilibrium position for a geometrically non-linear

wing corresponding to a given constant flap deflection distribution β(s) and uniform free-

stream velocity V∞, it is useful to develop a closed-form expression for the dependence of the

tip forces and moments x2(L) upon the respective values at the root. To this end, consider
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a discretised state vector

X :=


x(s1)

...

x(snsp)

 ∈ R12nsp (6.6)

corresponding to nodal values along the wing span

si := iL

nsp
, i = 0, . . . , nsp.

It is assumed that the boundary condition at the root is given by

x(s0) = x(0) =


V∞e2

03

x2(0)

 ∈ R12, x2(0) =


p1

...

p6



and we consider p = (pi) ∈ R6, the reactions at the support, as a vector of unknown

parameters.

Theorem 6.2.4. Suppose that a solution x(s) to (6.4) is known which satisfies the root

boundary condition

x(0) =

x0
1

p


where x0

1 ∈ R6 is known and fixed, and p ∈ R6. Consider F (X) := x2(L) ∈ R6. Then

dF

dp
≈

nsp−1∏
i=1

[I + ∆sGx(x(si))]>
06×6

I6



> −∆sL1(x0

1)>C

I −∆s [E − L2(p)C + L1(Cp)]

 . (6.7)

where si = iL/nsp,∆s := L/nsp and Gx is given by Proposition 6.2.3.

Proof. Suppose, for simplicity, that F (X) = (x2)j, for 1 ≤ j ≤ 6. To approximate the
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Jacobian, assume that the ODE is approximated using a forward-Euler scheme such that

x(si+1) = x(si) + ∆sG(x(si)), i = 0, . . . , nsp − 1,

where ∆s := L/nsp and G is defined as in (6.5). Now, satisfying the ODE is equivalent to

H(X,p) :=



I 0 · · · · · · 0

−I I 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 −I I





x(s1)

x(s2)
...
...

x(snsp)


−∆s



G(x(s0))

G(x(s1))
...
...

G(x(snsp−1))


−



x(s0)

0
...
...

0


= 0

(6.8)

where X is given by (6.6) and

x(s0) =


V∞e2

03

p

 ,

with e2 ∈ R3. To compute ∂F
∂p

consider the Lagrangian

L(X,p) := F (X) + µ>H(X,p)

where µ ∈ R12nsp is a vector of Lagrange multipliers. Then

dF

dp
= dL
dp

= ∂F

∂X

dX

dp
+
(
dµ

dp

)>
H + µ>

(
∂H

∂X

dX

dp
+ ∂H

∂p

)

(sinceH ≡ 0) =
(
∂F

∂X
+ µ>∂H

∂X

)
dX

dp
+ µ>∂H

∂p
.

We are free to choose the multiplier µ, and a judicious choice is for it to be the solution of
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the linear system of equations

(
∂H

∂X

)>
µ = −

(
∂F

∂X

)>
. (6.9)

Consequently,
dF

dp
= µ>

∂H

∂p
. (6.10)

Now, differentiating (6.8) implies that

(
∂H

∂X

)>
=



I 0 · · · · · · 0

−[I + ∆sGx(x(s1))] I 0 · · · 0

0 . . . . . . ...
... . . . . . . 0

0 · · · 0 −[I + ∆sGx(x(snsp−1))] I



>

and

(
∂F

∂X

)>
=



0
...

0

06

ej



Letting µ =
(
µ>1 · · · µ>nsp

)>
we obtain an analytical expression for the solution to (6.9):

µnsp = −

06

ej

⇒ µj =
nsp−1∏

i=j
[I + ∆sGx(x(si))]>

µnsp .

To calculate the Jacobian of F , it therefore remains to compute the derivative of H with
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respect to the parameter vector p. To this end, note that

G(x(s0)) = G
(
x0

1,p
)

=

G1 (x0
1,p)

G2 (x0
1,p)

 ,

and, hence,

∂H

∂p
= −∆s



−L1(x0
1)>C

−E + L2(p)C − L1(Cp)

0
...

0


−



06

I6

0
...

0


.

Finally, using (6.10),

dF

dp
=

nsp−1∏
i=1

[I + ∆sGx(x(si))]>
 0

ej



> ∆sL1(x0

1)>C

I + ∆s [−E + L2(p)C − L1(Cp)]

 ∈ R1×6,

with ej ∈ R6. Hence the result follows by considering each j = 1, . . . , 6.

6.2.2 Nonlinear equilibrium evaluation

Now that the Jacobian of the tip forces and moments is known with respect to the root

boundary conditions, Newton’s method can be employed to efficiently calculate a steady-state

solution of the nonlinear PDE (6.4). In the following, the phrase root boundary condition

p ∈ R6 implies that (6.4) has boundary condition

x(0) =

V∞e2

0

 , x2(0) = p.
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Note that it is not necessary for the implied accuracy of the numerical scheme involved in

Algorithm 4 Find deformed equilibrium under forcing
1: inputs Root boundary condition p0 ∈ R6 and corresponding solution x(0)(s) of (6.4);
ε > 0; and r = 0.

2: repeat
3: Update root forces and moments via (6.7) and

pr+1 ← pr −
[
∂F

∂x
(pr)

]−1

F (pr)

4: Solve (6.4) with initial condition pr+1 to obtain x(r+1)(s).
5: r ← r + 1
6: until ‖x(r)

2 (L)‖2 < ε
7: return Deformed equilibrium x(∗)(s)

the computation of Fx, specified by nsp, to be equal to the accuracy of the numerical scheme

used to solve (6.4) in step 4. of Algorithm 4. Furthermore, an advantage of analytically

calculating Fx via (6.7) is that a solution to the PDE needs only be computed once per step

of the Algorithm 4. In contrast, a numerical approximation of the Jacobian would require at

least 62 PDE solutions to be computed per Newton step.

6.3 Concluding Remarks

This Chapter begins with an efficient method of calculating derivatives of the terms in

the aeroelastic PDEs introduced in (5.4). The aeroelastic model is comprised of an intrinsic

beam formulation and two-dimensional aerodynamics both of which have at most quadratic

non-linearities a fact that allows the derivatives to be written concisely. Subsequently, an

expression for the sensitivity of the tip strains as a function of the root strains is derived.

Finally, this allows for a method, expressed in Algorithm 4, to be devised for calculating the

non-linear equilibrium states of the aeroelastic cantilever PDEs. This method is verified in

Chapter 7 and shown to accelerate aeroelastic calculations.
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Chapter 7

Cantilever Model Results

This Chapter begins with the verification of the state-space equations (5.66) derived in Chap-

ter 5. Both the state-space model’s frequency-domain and time-domain characteristics are

first compared with the literature. Then the adjoint-based method for calculating the non-

linear equilibrium states of the PDEs (5.4) is verified by comparison to the steady-state

solutions predicted by time-domain solutions of the state-space formulation. Subsequently, it

is made evident that the adjoint-based methods are able to accelerate aeroelastic calculations.

7.1 Validation

7.1.1 Model Inputs

We have a concise state-space equation (5.66) for the time-domain response for the

aeroservoelastic cantilever wing. As well as the external inputs, from the gust w(t) and

156
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Input Description
V∞ Free-stream velocity.
L Span-wise length of the wing.
ρ Density of the surrounding fluid.
b The semi-chord length, kept constant across

the span in this model.
(aAEj )ninj=1 Coefficients for the Wagner function finite

state approximation described in (3.28).
(bAEj )ninj=1 Coefficients for the Wagner function finite

state approximation described in (3.28).
ξea ξeab is the distance from the structural axis

to the point in which the aerodynamic forces
act. If ξea > 0 it reflects an aerodynamic
centre fore of the structural axis.

CLα The vertical lift coefficient arising from
changes in angle of attack.

CLβ The vertical lift coefficient arising from de-
flection of a trailing edge surface.

CMβ The pitching moment coefficient from deflec-
tion of a trailing edge surface.

(Slβ(s))nfll=1 Flap shape function modeling the distribu-
tion of nfl trailing edge surfaces.

d(s) The span-wise spatial distribution of the gust
defined in (7.3).

Table 7.1: Inputs to the aeroelastic model.

trailing edge flaps β(t), the model also requires the input of the parameters summarised in

Table 7.1. Further to the parameters described in Table 7.1 the model requires the input of

the mass matrix M (s) and compliance matrix C(s) introduced in (5.4). For this work, the

beam model will be assumed to have constant span-wise properties with the following mass
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Input Description
ρA Mass per unit length, kg m−1.

{ρIi}3
i=1 Moments of inertia per unit length around

each axis, kg m.
{EA}3

i=1 Elastic modulus, N
GJ Torsional stiffness, Nm2

{EIi}3
i=2 Bending stiffnesses, Nm2.

ξCG Distance from structural axis to the centre of
gravity, m.

Table 7.2: Structural properties required.

Input Value
ρ 1.02 kg m−3

b 0.9144m
(aAEj )ninj=1 [0.165, 0.335]>
(bAEj )ninj=1 [0.0455, 0.3]>
ξea 0.66
CLα 2π

Table 7.3: Required inputs that are fixed for the remainder of this work.

and compliance matrices,

M(s) =



ρA 0 0 0 0 0

0 ρA 0 0 0 0

0 0 ρA ξCGρA 0 0

0 0 ξCGρA ρI1 0 0

0 0 0 0 ρI2 0

0 0 0 0 0 ρI3



(7.1)

andC(s) = diag{EA−1
1 , EA−1

2 , EA−1
3 , GJ−1, EI−1

2 , EI−1
3 }, where the entries to these matrices

are described in Table 7.2. One can see that the assumptionM (s)x0
1 =

(
V∞m22(s)e>2 0

)>
,

made in Section 5.3 is trivial with this choice of mass matrix.
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Input Value
L 6.096m
ξCG −0.2
ρA 37.71 kg m−1

ρI1 8.64 kg m
ρI2, ρI3 8.64× 10−3kg m
EA1 1× 1010N

EA2, EA3 1× 1013N
GJ 0.99× 106Nm2

EI2 9.77× 106Nm2

EI3 1× 108Nm2

Table 7.4: Inputs used for the Goland wing validation.

7.1.2 Linear Stability Analysis of the Goland Cantilever Wing

In this section we compare the linear stability of the Goland wing [137] to the state-space

equation (5.66) derived from the PDE (5.4). The Goland wing is a well studied benchmark

for validating numerical linear aeroelastic simulations. First we define the open-loop flutter

speed VFL of the state-space system (5.66) as

VFL := sup{V∞ : Re(λi(A(V∞))) < 0, for all i = 1, . . . , n}, (7.2)

where λi(A) is the ith eigenvalue of A. Furthermore, we define the flutter frequency ωFL as

the imaginary part of the first unstable eigenvalue, corresponding to the flutter speed in (7.2).

The inputs used in this section for the Goland wing are those in Table 7.3 and Table 7.4.

Note the inputs in Table 7.3 are fixed for the remainder of this work. Implementation of the

current code, on the Goland wing, produced a flutter speed and frequency of VFL = 140ms−1

and ωFL = 69.8 s−1, which are compared with the literature in Table 7.5. One can see there is

excellent agreement with models using an intrinsic beam formulation and 2D aerodynamics.

The major factor that explains the higher flutter velocity in the models using UVLM is

that they account for tip effects and apparent mass, hence, UVLM models experience less
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Author Model Type VFLms
−1 ωFL s

−1

Current Intrinsic / 2D aero 140 69.8
Palacios [135] Intrinsic / 2D aero 141 69.8
Wang [138] Intrinsic / 2D aero 139 70.0
Wang [139] Intrinsic / UVLM 164 -
Murua [140] Displacement / UVLM 165 69

Table 7.5: Flutter velocity and frequency for the Goland wing with nmo = 8 and nsp = 60.
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Figure 7.1: Root locus of the linear Goland wing with nmo = 8 and nsp = 60. Free-stream
velocity from 5ms−1 to 150ms−1 in 5ms−1 increments.

aerodynamic forcing over the span of wing. Figure 7.1 is a plot of the eigenvalues, with

positive imaginary part, of the Goland wing calculated with the current code with nmo = 8.

With the exception of one mode the real parts of the eigenvalues decrease as the free-stream

velocity V∞ increases. The said exception initially follows the same pattern with Re(λi)

decreasing up until V∞ ≈ 120ms−1 after which Re(λi) is observed to increase, eventually

becomes unstable—causing flutter. When comparing 7.1 with [135, Figure 4] one can see

that in both Figures each eigenvalue starts on the imaginary axis with similar frequencies and

follows the same trajectory. This includes the eigenvalues corresponding to the aerodynamic

states that lie exclusively on the real axis.
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Input Value
V∞ 28ms−1

L 30.48m
ξCG 0.2

Table 7.6: Input exceptions for Section 7.1.3.

7.1.3 Time domain solutions with gust input

In the previous section we were able to show the current model’s frequency response

agrees well with the literature . In this section we validate time-domain solutions due to

external gust inputs. Furthermore, as this work is motivated by the need for more robust

aeroservoelastic modelling to facilitate the design of HALE aircraft we extend the validation

from the Goland wing, which has an aspect ratio of 3.33, to the Long-Goland wing, a cantilever

wing with the same cross-section but an aspect ratio of 16.67 as done by Simpson et al. [62].

The inputs to the state-space formulation (5.66) are the same as Section 7.1.2 with the

exceptions to those stated in Table 7.6. Note the centre of gravity has been moved to a more

stable position, akin to investigations in Chapter 4, Section 4.3.2, to avoid flutter. The gust

input used in this case is a typical “1− cos” gust, i.e.

w(t) =


w0
2

(
1− cos

(
2πV∞
LGU

t
))

0 ≤ t ≤ LGU
V∞

0 otherwise
, (7.3)

with LGU = 20m and w0 = 17.07ms−1.

The current implementation is compared with that studied in Simpson et al. [62] who

combined the same intrinsic structural model used in this work with an unsteady vortex

lattice method that was capable of capturing unsteady, three dimensional flow around a

deforming aircraft. They published time-domain results of a linearised model which we use
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Figure 7.2: Tip displacement of the Long-Goland wing due to gust input described in (7.3),
with LGU = 20m and w0 = 17.07ms−1. The blue line is the current implementation and the
red line is taken from Figure 11 by Simpson et al. [62].
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Figure 7.3: Root strains of the Long-Goland wing due to gust input described in (7.3), with
LGU = 20m and w0 = 17.07ms−1. The blue line is the current implementation and the red
line is taken from Figure 12 by Simpson et al. [62].
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for comparison in Figures 7.2 and 7.3. The initial response, where the unsteadiness of the

gust is weaker, matches closely. Furthermore, there is excellent agreement on the magnitude

of the responses. Moreover, a slightly larger response amplitude from the current model is

expected since our model does not account for tip effects, hence, the wing overall experiences

more lift for any given input—compared to [62] where tip effects are present. Note that Figure

7.2 depicts the displacement in the ez — defined in Chapter 5, Figure 5.1 — direction, which

is not a direct output of the solution to (5.66). Instead one must first use (5.36) to return the

values for x1(s, t) and x2(s, t) then use an integration scheme to recover the displacement

r(s, t). To recover the displacement r(s, t) ∈ R3 and rotation matrix T (s, t) ∈ R3×3, defined

in (5.2), we choose to integrate the strains Cx2 in space. First define

γ(s, t)

κ(s, t)

 := Cx2(s, t), (7.4)

then we can relate the strains, displacements and rotations by

dT

ds
= T κ̃, (7.5)

dr

ds
= T (γ + e1) . (7.6)

This can now be numerically integrated with the additional fact that we know that r(0, t) =

−V∞tey and T (0, t) = I3 ∈ R3×3. To clarify, the disagreement between these results due to

the modeling choices and not due to lack of convergence of the current modelling. To verify

this both the discretisation in space and time (∆s,∆t) were investigated by considering the

time integral of the tip displacement response in Figure 7.2, i.e. I =
∫ 5

0 r3(L, t) dt. De-

noting an approximation of I using the discretisation (∆s,∆t) as Ĩ(∆s,∆t) it was found

that
∣∣∣ Ĩ(1.016,0.005)−Ĩ(0.508,0.001)

Ĩ(0.508,0.001)

∣∣∣ = 0.019. Hence, it was determined that the discretisation

(0.508,0.001) lead to sufficiently converged solutions and that the disagreement in Figure
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7.2 is not due to lack of convergence. This discretisation was used for the remainder of this

Chapter.

7.1.4 Adjoint-based validation

In this section we compare the time-domain solutions validated in Chapter 5 with the

results obtained using Algorithm 4. For comparison, the Long-Goland wing is used, from

Chapter 5 Section 7.1.3, with the addition of a trailing edge flap. The properties of the

control surface are

S1
β(s) =


0 0 ≤ s < 0.8L,

1 0.8L ≤ s ≤ L,

CLβ = 5.3768, CMβ = −0.4340. (7.7)

These values for CLβ and CMβ are chosen using linear lift theory, described in [37, Chapter

5], and choosing a flap size of 0.2b in the ey direction, which was illustrated in Figure 5.1.

Assuming (5.66) is linearly stable it will converge to an equilibrium state. This equilibrium

state can therefore found by direct numerical simulation. The Matlab function ode45 is

employed here, with a time step ∆t = 0.001 s, to that effect. Specifically we use Algorithm

5 to find the equilibrium state using time-domain solutions of the state-space formulation

from Chapter 5. Using Algorithm 5 with inputs ε = 0.1, q0 = 0 ∈ Rn and tf = 5 s

the equilibrium displacement in the e3 direction was calculated and compared in Figure

7.4 against that calculated using the adjoint method, detailed in Algorithm 4. Algorithm

5 was designed to facilitate calculation of an equilibrium state with no prior knowledge.

The process of updating q0 helps reduce oscillations around the equilibrium when starting

simulations from states significantly different to the equilibrium state. One can see, in Figure

7.4, both methods agree very well for a range of flap deflections. Figure 7.4 can be seen as

further validation for the linearised time-domain modeling of the PDE (5.4) and validation
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Algorithm 5 Finding equilibrium under forcing using time-domain solution
1: inputs (βl)nfll=1; ε > 0; q0; tf .
2: repeat
3: Solve (5.66) with ode45 from t = 0 s to t = tf s and initial condition q(0) = q0 to

obtain q(tf ).
4:

q0 ← q(tf )

.
5: until ‖q0 − q(tf )‖2 < ε

6: return Deformed equilibrium x
(∗)
1 (s) = ∑nmo

g=1 ϕ1g(s)q1g(tf ) and x
(∗)
2 (s) =∑nmo

g=1 ϕ2g(s)q2g(tf ).
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Figure 7.4: Steady state displacement in the e3 direction over the span of Long-Goland wing
due to the control surface defined in (7.1.4) with deflection β.
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for Algorithm 4—along with the gradients used in Theorem 6.2.4. It might seem unintuitive

that results from Algorithm 5 and 4 should agree so well since the time-domain is a linearised

ODE compared to the non-linear equilibrium solution obtained using the adjoint method.

However, this is explained since some of the structural nonlinearities are in fact captured

when integrating to recover r(s, t) and the local rotation matrix T (s, t). Furthermore, one

can see that the agreement slightly worsens as β is increased. Since the geometric stiffening

should be captured one would expect if a more complex flap deflection was inputed the

disagreement might increase since the control surface forcing, defined in (5.34) is represented

by a quadratic non-linearity. To investigate this claim an additional control surface has been

considered, defined by

S2
β(s) =



0 0 ≤ s < 0.4L

1 0.4L ≤ s < 0.6L

0 0.6L ≤ s ≤ L

CLβ = 5.3768, CMβ = −0.4340. (7.8)

We define wing-1 as a wing with only one flap, S1 with deflection angle β1 = 1
180π; and

define wing-2 as a wing with two flaps, S1 and S2 with deflection angles β1 = −5
180π and

β2 = 15
180π, respectively. Comparing the two wings, in Figure 7.5, one can indeed see a larger

relative difference in the methods for wing-2.

7.2 Acceleration from Adjoint-Based Method

In this Section, we demonstrate using wing-1, defined in Section 7.1.4, how adjoint-

based methods can accelerate aeroelastic calculations. Firstly, we define the total elastic

energy of the cantilever wing as

U =
∫ L

0
x>2 Cx2 ds, (7.9)
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Figure 7.5: Steady state displacement in the e3 direction over the span of the Long-Goland
wing-1 and wing-2.

where x2 and C are the strains and compliance matrix, respectively, first introduced in Chap-

ter 5, Section 5.1. Elastic energy arises as a structure deforms. Furthermore, all structures

have a limit to how much they be deformed until their properties are irreversibly changed or

at worst catastrophic failure occurs. Hence, a desire to measure the amount of deformation is

often found in aeroelastic design optimisations. Here we compute the elastic energy of wing-1

in its equilibrium deformation as a function of the deflection β in control surface S1
β, defined

in (7.1.4), i.e. a fixed deflection is chosen and the elastic energy of the subsequent steady

state solution is found. The elastic energy was calculated over a range of deflections from

−10◦ to 10◦ using both the time-domain method described in Algorithm 5 and the adjoint

based method described in Chapter 6, Algorithm 4. One can see, in Figure 7.6, the methods

agree very well, however, as shown in Table 7.7 the adjoint-based method was able calculate

the elastic energy in less time. Specifically, the time-domain method 2.4 times the time to
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Figure 7.6: Elastic energy across wing-1 given a flap deflection β in degrees—normalised by
U0 the elastic energy that occurs with β = 10◦.

Time-domain (s) Adjoint-based (s)
Total time for Figure 7.6 30.9 13.1

Average time per deflection angle 2.8 1.2
Maximum time for a deflection angle 3.5 1.4

Table 7.7: Time differences between time-domain method and adjoint-based method.

calculate the elastic energy for each deflection angle in Figure 7.6. Hence, if a gradient-based

design optimisation, with d design variables, required to numerically calculate the gradient of

elastic energy choosing the adjoint-based method would be a factor of approximately 2d×2.4

quicker than the time-domain method, due to at least 2 function evaluations being required

per design variable for a gradient approximation.
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7.3 Concluding Remarks

This Chapter has has shown both the state-space formulation, detailed in Chapter 5,

and the adjoint-based method for solving the non-linear equilibrium equations have been veri-

fied. Verification of the state-space formulation was first achieved on the open-loop aeroelastic

system with the linear stability analysis of the Goland wing. The aeroelastic state-space sys-

tem, under the influence of a gust input, was then solved in the time-domain with root-strain

and tip-displacement responses. The results agreed with the literature and any differences

were explained by the differences in the aerodynamic model.

The adjoint-based method and the control surface input were verified by comparing

the steady-state solutions calculated by the adjoint-based method to that computed using

time-domain methods on the linear, state-space formulation. The equilibrium configurations

matched well for the cantilever wing with only one control surface, especially for relatively

smaller deflection angles. Yet, as the adjoint-based method was able to calculate the non-

linear equilibrium states, which was not possible with the linearised state-space formulation,

agreement worsened slightly when more control surface forcing was present. This is because

the control surface forcing enters the problem with a quadratic term and hence during the lin-

earisation of the state-space formulation some of this forcing is lost. Finally, we demonstrate

how adjoint-based methods can accelerate aeroelastic computations and in this example were

able to show computational time was more than halved when an adjoint-based method was

chosen.
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Conclusion

We end on a chapter that outlines the accomplishments of this work. Firstly, a summary of

this document is presented in Section 8.1. The key contributions from this work are then

analysed in Section 8.2. While we have engaged with the open research questions proposed

in Section 1.2 this work has also highlighted new unanswered questions. Hence, the chapter

finishes with a discussion on relevant future work that would advance this research further.

8.1 Summary

A computationally minimalistic controlled aeroelastic model has been designed to facil-

itate a full aeroservoelastic design optimisation. Specifically, design variables were available

from each sub-discipline, namely, the aerodynamics, structural mechanics and control ar-

chitecture (including observer dynamics). This work defined simultaneous optimisation as

concurrent optimisation of the plant, control hardware and control laws, as opposed to se-

170
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quential optimisation that initially designs and fixes the plant, only to subsequently add the

control design. We have exploited our minimalistic model as a test bed for aeroservoelas-

tic design optimisation. Firstly, it was shown that simultaneous optimisation strategies did

differ significantly with sequential strategies. However, interestingly, the benefits of a simul-

taneous optimisation were not guaranteed to outweigh the associate disadvantages, such as,

the increase complexity and dimensionality of the design space. The model was also used

to evaluate novel simultaneous optimisation strategies. A problem independent method for

reparameterising and temporarily reducing the dimensionality of the design vector is inves-

tigated. It was observed that the optimisation trajectories were affected not only by the

variable prioritisation technique but also the reparametrisation in isolation.

The aeroservoelastic system used in the first half of this work consists of a thin aerofoil

that is mounted on springs. The aerodynamics are modeled as an unsteady two dimensional

flow around a camberline that can undergo arbitrary deformations. The ability to approx-

imate the force on a deforming camberline supports the modelling of a compliant trailing

edge, which is used as a control surface. The introduction of aerodynamic states allows the

unsteady forces to be projected onto a finite space and, hence, the equations of motion can be

written in a state-space formulation. We also include an external vertical gust input that is

used to initiate time-domain responses. The trailing edge control surface is used for observer

based feedback regulated by pressure difference readings along the camberline. The control

and observer gains are calculated from Riccati equations defined by a LQG problem, al-

though, the control input is saturated to introduce a physical limit on the performance of the

controller. This model allows the selection of optimisation variables from the three aeroser-

voelastic fields, specifically we chose: the shape of the trailing edge to allow for the design of

the aerodynamic characteristics, which is not commonly possible with a camberline model;

the structural properties of the supporting linear springs and the compliant trailing edge;
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design of both the control hardware and software with the location of two pressure-difference

sensors and the state-weightings withing the LQG definition.

Initially, after the aeroelastic system was verified, a reduced design optimisation problem

was investigated that minimised a proxy for mass constrained to the system being open-loop

stable. It was observed that the connectedness of the design space affected the performance

of a gradient based optimiser. An ill-connected design space was also discovered to limit

the efficacy of a frequency-domain constraint, used to reduce the number of designs with

divergent responses due to the control saturation. This motivated the choice of using a cost-

function with both a static metric and a time-domain metric that integrated over the heave

and pitch responses caused by a series of discrete gusts. In addition to this cost-function the

full aeroservoelastic design optimisation was finally defined with a constraint on the closed-

loop linear stability and bounds on the design vector, such as pressure-difference sensors

must be on the aerofoil. A comparison is made between simultaneous and sequential design

optimisation strategies at different free-stream velocities. It was recorded that for higher

velocities the simultaneous methodology was able to improve the cost-function by a further

8%, compared with the sequential method. However, it was observed that the simultaneous

method took up to a factor of 7 times the number of cost-function evaluations to converge

and also suffered from greater sensitivity to initial conditions. Furthermore, the simultaneous

method was not guaranteed to outperform the sequential method. This was demonstrated

at lower velocities where the simultaneous method was less beneficial. Specifically, at the

lowest velocity tested the sequential method converged to designs with a lower cost-function

than the simultaneous method and required fewer function evaluations. Since the available

aerodynamic force the control surface can generate increases with the free-stream velocity this

also corresponds to an increase in control authority, i.e. increase the control architecture’s

ability to affect the aerofoil’s performance. Thus, at high velocities the benefits of including
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the control design immediately outweigh the negatives of increasing the dimensionality of

the design optimisation. The higher velocity simultaneous designs were characterised by

aerofoils with a centre of mass further aft, an attribute that causes a decrease in open-loop

stability. Yet, with closed-loop control this decrease in stability increases performance since

the controller is able to affect the system-states at a quicker rate, specifically, we demonstrate

that such a design can reject a gust input faster. A sequential method would not have obtained

this solution since it first optimises the open-loop system in which a more forward centre of

mass would decrease open-loop performance.

The aerofoil model is finally used to investigate the parametrisation and variable se-

lection methods based on proper orthogonal decomposition that were outlined in Chapter 2.

In order to study these two methods, relatively large sets of random initial design vectors

were generated so numerous optimisation trajectories could be compared. Both methods

were able to reduce undesirable features of a simultaneous optimisation strategy, namely,

they decreased the sensitivity to the initial conditions. Additionally, they converged to de-

signs with better performance (cost-function reduction of 2% and 4% for the parametrisation

and variable selection technique, respectively) while needing fewer cost-function evaluations

(28.4% and 37.5% respectively).

In the second half of the work another, more physically realisable, aeroelastic model

is introduced. The model includes a geometrically-nonlinear, slender-beam that can be dis-

placed and rotated in three dimensional space; an unsteady two-dimensional flow over a thin,

symmetric plate; trailing edge flaps that can be varied in number, size and position; and a

vertical, quasi-steady gust input. The beam is clamped at one end and moves at a constant

velocity. The equations of motion for the geometrically-nonlinear beam are written in the

intrinsic formulation, i.e. the primary state-variables are the velocities and strains. This re-
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sults in a PDE with, at most, quadratic nonlinearities, which was taken advantage of later in

the work to efficiently compute analytic sensitivities. So that time-domain responses to gust

inputs could be investigated the coupled aerodynamic and structural equation of motion are

reduced into a state-space formulation. This is achieved by linearising the PDEs around a

steady forward flight condition. Firstly, the solutions in the time-domain were compared, and

verified, to responses in the literature. Subsequently, the time-domain solution was used to

calculate forward flight equilibrium states, i.e. flights conditions, such as, free-stream velocity,

control surface location and control surface deflection were fixed and the steady-state solu-

tion found. These equilibrium states were compared to those calculated via an adjoint-based

method. The adjoint-based method was derived from the original, pre-linearised, PDEs that

includes up to quadratic nonlinearities. Analytic expressions for the derivatives of each term

in the PDEs were calculated and an expression for the sensitivity of the wing-tip strains was

derived as a function of the wing-root strains. This expression allowed for efficient calculation

of the nonlinear equilibrium states that agreed well with the time-domain solutions—with

only slight divergence for increased control surface forcing. Finally, a demonstration of how

adjoint-based methods can accelerate aeroelastic calculations is included. The total elastic

energy of a wing in equilibrium is calculated, for a range of control surface deflections, via

both the time-domain method and adjoint-based method. The results from these methods are

in agreement but the adjoint-based methods required less than half the time for computation.

Distribution A Approved for Public Release, Distribution Unlimited 



8.2. Significant Contributions 175

8.2 Significant Contributions

1. Minimalistic ASE model for simultaneous design optimisation

investigations

At the start of this work, in Section 1.2, we introduced four Open Research Questions.

In order to address Question 1 a controlled aeroelastic model was created (and verified) that

allows the design of variables from aerodynamics, structural mechanics and control theory.

In order to minimise the computational burden we chose to model a simple aerofoil with a

two dimensional, potential flow about a camberline. However, a balance between reducing

model complexity and retaining a representative aeroservoelastic framework was sought so

that results would still apply to more physically realistic models. We ensured that the

aerofoil model remained representative to the subject of aeroservoelastic design optimisation

by addressing the following:

• The inclusion of unsteady aerodynamics increased the model complexity as it required

the introduction of additional aerodynamic states. However, it allowed the aeroelastic

phenomena of flutter speed to be considered. Flutter is especially important to quantify

in the context of studying controlled aeroelastic designs that replace structural stiffness

via their control systems.

• It is not common for a design optimisation of a camberline model to include aero-

dynamic design variables. Yet, this was achieved in this work by the inclusion of a

deforming complaint trailing edge. The trailing edge deformation is defined by the

shape function, described in (3.52), which affects the aerodynamic forcing experienced

by the aerofoil. This description allowed for the shape function to be included in the

Distribution A Approved for Public Release, Distribution Unlimited 



176 Chapter 8. Conclusion

design optimisation, allowing aerodynamic design variables to be considered. Further-

more, in-keeping with the goal to reduce computational costs we described a method to

accelerate the design optimisation of the compliant trailing edge in Section 3.4.2. Note

that this also pertains to Question 5 as the modelling choice of the aerodynamics and

shape function parameterisation made this acceleration possible.

• Saturation of the controller was included so nonlinear effects were present. An implica-

tion of this was that a design could be linearly stable but still have a divergent response.

This necessitated the consideration of time-domain responses in the design optimisa-

tion. Note that, as mentioned in Chapter 1, more advanced time-domain methods were

called for in the failure report of the 2004 NASA Helios prototype.

• Lastly, the aerofoil model permitted the design of control hardware placement via the

optimisation of the location of pressure difference sensors. Normally, within the liter-

ature, control hardware considerations have only been investigated in the context of

control surface position or sizing within wing models. Since calculation of the pressure

difference over camberline was already a prerequisite for solving the equations of motion

the addition of pressure difference sensors caused no additional computational burden

but increased the number of control theory design variables available.

As stated in Question 1, the aerofoil model was primarily created to investigate simul-

taneous optimisation methods, however, it also contributed insight to Question 2. Upon

comparisons between simultaneous and sequential optimisation methods it was established

that performance improvements from using a simultaneous method, i.e. increasing the prob-

lem complexity, were not guaranteed — even though a sequential approach should be sub-

optimal. This was demonstrated in Section 4.3.1 where simultaneous and sequential opti-

misation trajectories were compared over a range of free-stream velocities. For the highest
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velocities the simultaneous method did outperform the sequential method, converging on

designs with a cost-function over 8% lower. Albeit, this came at the expense of requiring

more cost-function evaluations and an increase to the variance in final designs. The trade-off

for increasing problem complexity, using a simultaneous method as opposed to a sequential

method, to gain improvements in performance was not seen for the lower velocities studied.

In fact the sequential method outperformed the simultaneous method at the lowest veloc-

ities. This was likely due to the extra complexity and dimensionality of the simultaneous

method meaning there were an increased number of local minima. This was especially true

for lower velocities as the control variables had relatively little influence on the cost-function,

i.e. the control design space was flat. But as the velocity is increased the cost-function

becomes more sensitive to the control design, effectively steepening the design space so that

less designs prematurely converged to low performing local minima.

2. Exploration of the use of proper orthogonal decomposition on

preliminary gradient-based optimisations

Simultaneous optimisation strategies that incorporate proper orthogonal decomposition

(POD) on preliminary optimisation trajectories are proposed, in Section 2.4.2, and subse-

quently tested, in Section 4.3, on the aerofoil model. The first strategy (Algorithm 3 with

Λ = 1) results in an ordinary simultaneous optimisation but with a design vector that has

been reparameterised, or more specifically rotated to align with the POD basic vectors.

Section 4.3.3 is able to directly address Question 3, from Chapter 1, by demonstrating

that improvements in optimisation trajectories are possible with our proposed POD-based

reparameterisation strategy. Firstly, this method consistently converged, even for relatively

lenient converging tolerances ε, on designs with a lower cost-function. We also showed that

the reparametrisation strategy was able to reduce the number of cost-function evaluations
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required by 28.4% — this result is made more impressive considering that the reduction in

the number of evaluations includes the extra optimisation trajectories require to form the

POD training-set. Lastly, this method also achieves a reduction in the variance in the final

designs of 22.4%. This attenuation in the sensitivity to the initial conditions could be due to

the numerical conditioning, caused by aligning the design vector to the POD basis vectors,

reducing optimisation trajectories prematurely terminating in local minima.

Investigation of Question 4 was accomplished via the second POD-based strategy

(Algorithm 3 with Λ < 1). This method uses POD on the same preliminary optimisation

trajectories to rotate and re-order the design vector with a completely automated and problem

independent manner. The new design variables are outputted in order of their priority

with a weighted metric, λi defined in (2.13), of their importance. The dimensionality of

an optimisation problem can hence be reduced by removing the least important variables.

In order to reduce the dimensionality in a problem independent way our method requires

an input of the minimum variance possible after removing dimensions Λ. This ensures the

method is independent of the initial dimensionality. For example, the effect of reducing

the dimensionality of a problem by one is likely to be significantly different in a design

optimisation over three variables compared to one with fifty variables. More consistency is

expected with our proposed method: removing dimensions such that an inputted fraction Λ

of the variance encountered in preliminary optimisations is retained. Our reduction strategy

first converges to an intermediate design, possibly only with a course tolerance condition,

then restarts the optimisation from the intermediate design with the full design vector. This

resulted in not only higher performing final designs but in a 37.5% reduction in the number

of cost-function evaluations and a 35.3% reduction in the variance of the final designs.
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3. A computational efficient procedure for nonlinear aeroelastic

wing simulation

Equations of motion have been derived and verified for a cantilever wing from coupling a

nonlinear-geometric beam with two dimensional potential flow models. The first formulation,

described in Chapter 5, reduced the equations of motion to a state-space formulation with

control surface and external gust inputs akin to the aerofoil model described and investigated

in Chapter 3 and 4, respectively. We then chose to invest time on the aeroelastic solver to

achieve faster solutions, further exploring Question 5. Our choice of the intrinsic beam

formulation combined with the two dimensional aerodynamic model resulted in PDEs with

at most quadratic nonlinearities. This was exploited to derive analytical expressions for the

derivatives of the terms in the PDEs. As an example of the value of these analytic derivatives

we devised a method for the efficient prediction of nonlinear equilibrium states. This adjoint-

based method was able to accelerate aeroelastic calculation by a factor of two, compared to

the time-domain method.

8.3 Recommendations for Future Work

In this final section we deliberate the author’s opinion on possible future points of focus

stemming from this work. Although this discussion is not exhaustive we aim to highlight and

motivate several research directions that further our addition to the literature.
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8.3.1 Continued exploration of POD based optimisation strategies

In answering Question 2 we observed that one cannot guarantee that a simultaneous

strategy will elicit an improvement in optimisation trajectories. Therefore, a method that

could predict when a design optimisation will benefit from using a simultaneous optimisation

method could save computational time and award valuable insight to the underlying model

or design space. This could be possible by using the same initial steps of Algorithm 3, i.e.

generated a random set of initial designs, perform optimisations from these points to create a

set of optimisation trajectories, then employ POD on this training-set. This outputs the POD

basis vectors H ∈ Rd×d and the associated basis vector’s eigenvalue λj, which is proportional

to the variance encountered in the training-set in that direction. One could then truncate

H, for example, one could use Λ = 0.5 to concentrate on the most important basis vectors

H̄ ∈ Rd×r, where r < d. Finally, if we consider si = ∑r
j=1 H̄ij for each i that is associated to

a control design variable we should have a metric for how sensitive the problem is to control

design. The closer si is to 1, since H is unitary, the more important the associated variable

should be considered. Future work could investigate what practical thresholding values, for

Λ and si, predict when a simultaneous optimisation will be beneficial.

The novel optimisation strategies we proposed could benefit from various algorithmic

optimisations. However, the biggest inefficiency, in the author’s opinion, is that from the

preliminary optimisations only the trajectories are inputted into the POD then effectively

discarded. Since a gradient-based optimiser has been used in the preliminary optimisations

one also has access to global gradient information which could be used in conjunction with

the POD strategy for sensitivity analysis.

Lastly, the POD strategies should be investigated on design optimisations of higher
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dimensionality to ensure the method scales well. Indeed the author suspects the strategies

proposed will be more beneficial as the number of design variables increases. The increase

in dimensionality should offer the variable prioritisation technique more freedom to identify

superfluous directions of optimisation that can be at least temporarily ignored. A suitable

model for increasing the number of design variables, while not significantly increasing the

computational burden, is the cantilever model described in Chapters 5 and 6.

8.3.2 Design optimisation of cantilever model

Upon deriving the state-space formulation for the cantilever wing, in Chapter 5, we

chose to devote time into improving the aeroelastic solver. Instead, one could have used the

state-space description of a cantilever wing, from Chapter 5, for investigating aeroservoelastic

design optimisation. One advantage of the cantilever model is that it allows a significant

expansion of design variables, such as, the size and placement of control surfaces or the

distribution of mass. A design optimisation similar to that defined in Chapters 4 and 5 could

be created for the cantilever model, for example,

min
X

Mtot(X) +
∫ T

t=0

∫ L

s=0
x2(X; s, t)>C(X)x2(X; s, t) dsdt (8.1)

such that q̇(t) = A (X;V∞) q(t) +BW (X;V∞)w(t) + V 2
∞Bβ(X)β, (8.2)

0.8V∞ − VF (X) ≤ 0, (8.3)

0 ≤ X ≤ 1, (8.4)

whereMtot is a static metric of the total mass, (8.2) is the equation of motion for the cantilever

wing derived in Section 5.6.3 and VF is the flutter speed. An initial investigation could be

to compare simultaneous and sequential methods over a range of free-stream velocities to

check the results from Chapter 4 are repeatable. Furthermore, it would be interesting to
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obtain similar results by varying the number of control flaps rather than the free-stream

velocity. Would a simultaneous optimisation strategy become more beneficial as one increased

the number of control surfaces? One could then evaluate how the POD based variable

prioritisation methods scale with a design optimisation of higher dimensionality.

Alternatively, further work on adjoint-based methods would also be constructive. In

Section 7.2 we demonstrated how an adjoint-based method could accelerate aeroelastic calcu-

lations. Using the analytic derivatives derived in Section 6.1 this could be furthered to include

more aeroelastic calculations and a framework for an adjoint-based design optimisation. One

could begin by focusing on static problems, i.e. optimisation of the steady state solution,

then advance to adjoint-based optimisation of dynamic problems. A basic static problem

would be to minimise the root strain x2(0) by optimisation of the deflection of given control

surfaces. Using Lagrange multipliers one would constrain that the tip strain x2(L) = 0, as

the cantilever boundary conditions dictate, and to physically realise the problem that the

vertical component of strain was constant to model a fixed lift objective. This would require

derivatives with respect to the flap deflection to be derived.
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Appendix A

Transfer function from gust input to

flap input

From Chapter 4 we have the closed-loop system (3.58) and observer dynamics (3.65) that we

write below as

 ẋ

˙̂x

 =

 A −BuK

LC A− LC −BuK


 x

x̂

+

 Bw

0

w. (A.1)

Performing a Laplace transformation, so that X(s) = L{x(t)}, U(s) = L{u(t)} and W (s) =

L{w(t)}, and rearranging gives

 sI − A −BuK

LC sI − (A− LC −BuK)


 X

X̂

 =

 Bw

0

W. (A.2)
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202 Chapter A. Transfer function from gust input to flap input

A final rearrangement and a pre-multiplication by
(

0 −K
)
gives the desired result of

U =
(

0 −K
) sI − A −BuK

LC sI − (A− LC −BuK)


−1 Bw

0

W, (A.3)

:= Tuw(s)W. (A.4)
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